Upload folder using huggingface_hub
Browse files- arena_datasets.py +181 -0
arena_datasets.py
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datasets
|
2 |
+
from datasets import load_dataset
|
3 |
+
import json
|
4 |
+
from tqdm import tqdm
|
5 |
+
fw = open("/apdcephfs_gy2/share_303094202/bazzfeng/data/math_sft_bigbig.jsonl", "w+")
|
6 |
+
fw2 = open("/apdcephfs_gy2/share_303094202/bazzfeng/data/science_sft_bigbig.jsonl", "w+")
|
7 |
+
udict = {}
|
8 |
+
|
9 |
+
mydata = load_dataset('TIGER-Lab/WebInstruct-verified')
|
10 |
+
for item in mydata['train']:
|
11 |
+
new_d = {"loss_mask": [0,1], "topic": "数学", "is_business": 0} if item['category']=='Mathematics' else {"loss_mask": [0,1], "topic": "科学", "is_business": 0}
|
12 |
+
answer = item['answer']
|
13 |
+
new_d['ref_answer'] = answer
|
14 |
+
new_d['messages'] = [{"content": item['question'], "role": "user"}, {"content": answer, "role": "assistant"}]
|
15 |
+
if new_d['messages'][0]['content'][:50] in udict:
|
16 |
+
continue
|
17 |
+
else:
|
18 |
+
if item['category']=='Mathematics':
|
19 |
+
fw.write(json.dumps(new_d, ensure_ascii=False)+"\n")
|
20 |
+
else:
|
21 |
+
fw2.write(json.dumps(new_d, ensure_ascii=False)+"\n")
|
22 |
+
for item in mydata['test']:
|
23 |
+
new_d = {"loss_mask": [0,1], "topic": "数学", "is_business": 0} if item['category']=='Mathematics' else {"loss_mask": [0,1], "topic": "科学", "is_business": 0}
|
24 |
+
answer = item['answer']
|
25 |
+
new_d['ref_answer'] = answer
|
26 |
+
new_d['messages'] = [{"content": item['question'], "role": "user"}, {"content": answer, "role": "assistant"}]
|
27 |
+
if new_d['messages'][0]['content'][:50] in udict:
|
28 |
+
continue
|
29 |
+
else:
|
30 |
+
if item['category']=='Mathematics':
|
31 |
+
fw.write(json.dumps(new_d, ensure_ascii=False)+"\n")
|
32 |
+
else:
|
33 |
+
fw2.write(json.dumps(new_d, ensure_ascii=False)+"\n")
|
34 |
+
|
35 |
+
mydata = load_dataset('Skywork/Skywork-OR1-RL-Data')
|
36 |
+
|
37 |
+
#fw = open("/apdcephfs_gy2/share_303094202/bazzfeng/data/skywork_deepmath.jsonl", "w+")
|
38 |
+
for item in mydata['math']:
|
39 |
+
new_d = {"loss_mask": [0,1], "topic": "数学", "is_business": 0}
|
40 |
+
answer = item['reward_model']['ground_truth']
|
41 |
+
new_d['ref_answer'] = answer
|
42 |
+
new_d['messages'] = item['prompt']
|
43 |
+
new_d['messages'].append({"content": answer, "role": "assistant"})
|
44 |
+
if new_d['messages'][0]['content'][:50] in udict:
|
45 |
+
continue
|
46 |
+
else:
|
47 |
+
udict[new_d['messages'][0]['content'][:50]] = 1
|
48 |
+
fw.write(json.dumps(new_d, ensure_ascii=False)+"\n")
|
49 |
+
#break
|
50 |
+
mydata = load_dataset('zwhe99/DeepMath-103K')
|
51 |
+
for item in mydata['train']:
|
52 |
+
new_d = {"loss_mask": [0,1], "topic": "数学", "is_business": 0}
|
53 |
+
answer = item['final_answer']
|
54 |
+
new_d['ref_answer'] = answer
|
55 |
+
new_d['messages'] = [{"content": item["question"], "role": "user"}, {"content": answer, "role": "assistant"}]
|
56 |
+
if new_d['messages'][0]['content'][:50] in udict:
|
57 |
+
continue
|
58 |
+
else:
|
59 |
+
udict[new_d['messages'][0]['content'][:50]] = 1
|
60 |
+
fw.write(json.dumps(new_d, ensure_ascii=False)+"\n")
|
61 |
+
#break
|
62 |
+
|
63 |
+
|
64 |
+
|
65 |
+
lans = ['ar', 'bn', 'de', 'en', 'es', 'fr', 'id', 'it', 'ja', 'ko', 'ms', 'pt', 'ru', 'sw', 'te', 'th', 'vi', 'zh']
|
66 |
+
for lan in lans:
|
67 |
+
mydata = load_dataset('Qwen/PolyMath', lan)
|
68 |
+
for item in mydata['top']:
|
69 |
+
answer = item['answer']
|
70 |
+
new_d = {"loss_mask": [0,1], "topic": "数学", "is_business": 0}
|
71 |
+
new_d['ref_answer'] = answer
|
72 |
+
new_d['messages'] = [{"content": item["question"], "role": "user"}, {"content": answer, "role": "assistant"}]
|
73 |
+
if new_d['messages'][0]['content'][:50] in udict:
|
74 |
+
continue
|
75 |
+
else:
|
76 |
+
udict[new_d['messages'][0]['content'][:50]] = 1
|
77 |
+
fw.write(json.dumps(new_d, ensure_ascii=False)+"\n")
|
78 |
+
for item in mydata['high']:
|
79 |
+
answer = item['answer']
|
80 |
+
new_d = {"loss_mask": [0,1], "topic": "数学", "is_business": 0}
|
81 |
+
new_d['ref_answer'] = answer
|
82 |
+
new_d['messages'] = [{"content": item["question"], "role": "user"}, {"content": answer, "role": "assistant"}]
|
83 |
+
if new_d['messages'][0]['content'][:50] in udict:
|
84 |
+
continue
|
85 |
+
else:
|
86 |
+
udict[new_d['messages'][0]['content'][:50]] = 1
|
87 |
+
fw.write(json.dumps(new_d, ensure_ascii=False)+"\n")
|
88 |
+
for item in mydata['medium']:
|
89 |
+
answer = item['answer']
|
90 |
+
new_d = {"loss_mask": [0,1], "topic": "数学", "is_business": 0}
|
91 |
+
new_d['ref_answer'] = answer
|
92 |
+
new_d['messages'] = [{"content": item["question"], "role": "user"}, {"content": answer, "role": "assistant"}]
|
93 |
+
if new_d['messages'][0]['content'][:50] in udict:
|
94 |
+
continue
|
95 |
+
else:
|
96 |
+
udict[new_d['messages'][0]['content'][:50]] = 1
|
97 |
+
fw.write(json.dumps(new_d, ensure_ascii=False)+"\n")
|
98 |
+
for item in mydata['low']:
|
99 |
+
answer = item['answer']
|
100 |
+
new_d = {"loss_mask": [0,1], "topic": "数学", "is_business": 0}
|
101 |
+
new_d['ref_answer'] = answer
|
102 |
+
new_d['messages'] = [{"content": item["question"], "role": "user"}, {"content": answer, "role": "assistant"}]
|
103 |
+
if new_d['messages'][0]['content'][:50] in udict:
|
104 |
+
continue
|
105 |
+
else:
|
106 |
+
udict[new_d['messages'][0]['content'][:50]] = 1
|
107 |
+
fw.write(json.dumps(new_d, ensure_ascii=False)+"\n")
|
108 |
+
|
109 |
+
|
110 |
+
mydata = load_dataset('nvidia/OpenMathReasoning')
|
111 |
+
for item in tqdm(mydata['cot']):
|
112 |
+
answer = item['generated_solution']
|
113 |
+
new_d = {"loss_mask": [0,1], "topic": "数学", "is_business": 0}
|
114 |
+
new_d['ref_answer'] = item['expected_answer']
|
115 |
+
new_d['messages'] = [{"content": item["problem"], "role": "user"}, {"content": answer, "role": "assistant"}]
|
116 |
+
if new_d['messages'][0]['content'][:50] in udict:
|
117 |
+
continue
|
118 |
+
else:
|
119 |
+
udict[new_d['messages'][0]['content'][:50]] = 1
|
120 |
+
fw.write(json.dumps(new_d, ensure_ascii=False)+"\n")
|
121 |
+
for item in tqdm(mydata['tir']):
|
122 |
+
answer = item['generated_solution']
|
123 |
+
new_d = {"loss_mask": [0,1], "topic": "数学", "is_business": 0}
|
124 |
+
new_d['ref_answer'] = item['expected_answer']
|
125 |
+
new_d['messages'] = [{"content": item["problem"], "role": "user"}, {"content": answer, "role": "assistant"}]
|
126 |
+
if new_d['messages'][0]['content'][:50] in udict:
|
127 |
+
continue
|
128 |
+
else:
|
129 |
+
udict[new_d['messages'][0]['content'][:50]] = 1
|
130 |
+
fw.write(json.dumps(new_d, ensure_ascii=False)+"\n")
|
131 |
+
for item in tqdm(mydata['genselect']):
|
132 |
+
answer = item['generated_solution']
|
133 |
+
new_d = {"loss_mask": [0,1], "topic": "数学", "is_business": 0}
|
134 |
+
new_d['ref_answer'] = item['expected_answer']
|
135 |
+
new_d['messages'] = [{"content": item["problem"], "role": "user"}, {"content": answer, "role": "assistant"}]
|
136 |
+
if new_d['messages'][0]['content'][:50] in udict:
|
137 |
+
continue
|
138 |
+
else:
|
139 |
+
udict[new_d['messages'][0]['content'][:50]] = 1
|
140 |
+
fw.write(json.dumps(new_d, ensure_ascii=False)+"\n")
|
141 |
+
|
142 |
+
|
143 |
+
"""
|
144 |
+
mydata = load_dataset('nvidia/Nemotron-CrossThink')
|
145 |
+
for item in mydata['train_math']:
|
146 |
+
answer = item['reward_model']['ground_truth']
|
147 |
+
new_d = {"loss_mask": [0,1], "topic": "数学", "is_business": 0}
|
148 |
+
new_d['ref_answer'] = answer
|
149 |
+
new_d['messages'] = [{"content": item["meta_data"]["question"], "role": "user"}, {"content": answer, "role": "assistant"}]
|
150 |
+
if new_d['messages'][0]['content'][:50] in udict:
|
151 |
+
continue
|
152 |
+
else:
|
153 |
+
udict[new_d['messages'][0]['content'][:50]] = 1
|
154 |
+
fw.write(json.dumps(new_d, ensure_ascii=False)+"\n")
|
155 |
+
for item in mydata['train_qa']:
|
156 |
+
answer = item['reward_model']['ground_truth']
|
157 |
+
new_d = {"loss_mask": [0,1], "topic": "科学", "is_business": 0}
|
158 |
+
new_d['ref_answer'] = answer
|
159 |
+
new_d['messages'] = [{"content": item["meta_data"]["question"], "role": "user"}, {"content": answer, "role": "assistant"}]
|
160 |
+
if new_d['messages'][0]['content'][:50] in udict:
|
161 |
+
continue
|
162 |
+
else:
|
163 |
+
udict[new_d['messages'][0]['content'][:50]] = 1
|
164 |
+
fw2.write(json.dumps(new_d, ensure_ascii=False)+"\n")
|
165 |
+
"""
|
166 |
+
#mydata = load_dataset('FreedomIntelligence/medical-o1-reasoning-SFT')
|
167 |
+
lans = ['en','en_mix','zh','zh_mix']
|
168 |
+
for lan in lans:
|
169 |
+
mydata = load_dataset('FreedomIntelligence/medical-o1-reasoning-SFT', lan)
|
170 |
+
for item in mydata['train']:
|
171 |
+
new_d = {"loss_mask": [0,1], "topic": "科学", "is_business": 0}
|
172 |
+
new_d['ref_answer'] = item['Response']
|
173 |
+
new_d['messages'] = [{"content": item['Question'], "role": "user"}, {"content": item['Response'], "role": "assistant"}]
|
174 |
+
if new_d['messages'][0]['content'][:50] in udict:
|
175 |
+
continue
|
176 |
+
else:
|
177 |
+
udict[new_d['messages'][0]['content'][:50]] = 1
|
178 |
+
fw2.write(json.dumps(new_d, ensure_ascii=False)+"\n")
|
179 |
+
#new_d['messages'].append({"content": item['output'], "role": "assistant"})
|
180 |
+
|
181 |
+
#print(mydata)
|