grpo_run_code / recipes /smollm2 /sft /config_smol.yaml
zswzswzsw's picture
Upload folder using huggingface_hub
ae40651 verified
# Model arguments
model_name_or_path: HuggingFaceTB/SmolLM2-360M # we use this script for the 135M model too
model_revision: main
tokenizer_name_or_path: HuggingFaceTB/SmolLM2-360M-Instruct # Custom tokenizer with <|im_start|> and <|im_end|> tokens
torch_dtype: bfloat16
use_flash_attention_2: true
# Data training arguments
dataset_mixer:
HuggingFaceTB/smol-smoltalk: 1.0
dataset_splits:
- train
- test
preprocessing_num_workers: 36
# SFT trainer config
bf16: true
do_eval: true
evaluation_strategy: epoch
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
hub_model_id: smollm2-360M-sft
hub_strategy: every_save
learning_rate: 1.0e-03 # 3e-4
log_level: info
logging_steps: 5
logging_strategy: steps
lr_scheduler_type: cosine
max_seq_length: 8192
max_steps: -1
num_train_epochs: 2
output_dir: data/smollm2-360M-sft
overwrite_output_dir: true
per_device_eval_batch_size: 4
per_device_train_batch_size: 4
push_to_hub: true
remove_unused_columns: true
report_to:
- tensorboard
- wandb
save_strategy: "no"
seed: 42
warmup_ratio: 0.1