# Model arguments model_name_or_path: HuggingFaceTB/SmolLM2-360M # we use this script for the 135M model too model_revision: main tokenizer_name_or_path: HuggingFaceTB/SmolLM2-360M-Instruct # Custom tokenizer with <|im_start|> and <|im_end|> tokens torch_dtype: bfloat16 use_flash_attention_2: true # Data training arguments dataset_mixer: HuggingFaceTB/smol-smoltalk: 1.0 dataset_splits: - train - test preprocessing_num_workers: 36 # SFT trainer config bf16: true do_eval: true evaluation_strategy: epoch gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false hub_model_id: smollm2-360M-sft hub_strategy: every_save learning_rate: 1.0e-03 # 3e-4 log_level: info logging_steps: 5 logging_strategy: steps lr_scheduler_type: cosine max_seq_length: 8192 max_steps: -1 num_train_epochs: 2 output_dir: data/smollm2-360M-sft overwrite_output_dir: true per_device_eval_batch_size: 4 per_device_train_batch_size: 4 push_to_hub: true remove_unused_columns: true report_to: - tensorboard - wandb save_strategy: "no" seed: 42 warmup_ratio: 0.1