Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- get_concept.py +59 -0
- right_data_with_gold_shuffle.json +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
right_data_with_gold_shuffle.json filter=lfs diff=lfs merge=lfs -text
|
get_concept.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer
|
2 |
+
from vllm import LLM, SamplingParams
|
3 |
+
import argparse
|
4 |
+
import json
|
5 |
+
from tqdm import tqdm
|
6 |
+
|
7 |
+
parser = argparse.ArgumentParser()
|
8 |
+
parser.add_argument('--start', type=int,help='模型路径')
|
9 |
+
parser.add_argument('--end', type=int,help='模型路径')
|
10 |
+
args = parser.parse_args()
|
11 |
+
### 分片跑数据
|
12 |
+
|
13 |
+
modelpath = "/dev_data/swzhang/model/LLM-Research/Meta-Llama-3-8B-Instruct/"
|
14 |
+
|
15 |
+
# Initialize the tokenizer
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained(modelpath, trust_remote_code=True)
|
17 |
+
|
18 |
+
# Input the model name or path. Can be GPTQ or AWQ models.
|
19 |
+
llm = LLM(modelpath, dtype='float16', tensor_parallel_size=1, trust_remote_code=True, enforce_eager=True)
|
20 |
+
sampling_params = SamplingParams(temperature=0.5, top_p=0.9, max_tokens=16000)
|
21 |
+
num_concepts = 5
|
22 |
+
system_prompt = "You are a pirate chatbot who always responds in pirate speak!"
|
23 |
+
with open('right_data_with_gold_shuffle.json','r',encoding='utf-8')as f:
|
24 |
+
lines = f.readlines()[args.start:args.end]
|
25 |
+
|
26 |
+
prompts = []
|
27 |
+
for line in tqdm(lines):
|
28 |
+
one_data = json.loads(line)
|
29 |
+
problem = one_data['question']
|
30 |
+
prompt = f""" As an expert in educational assessment, analyze this problem:
|
31 |
+
{problem}
|
32 |
+
Break downandidentify {num_concepts} foundational concepts being tested. List these knowledge
|
33 |
+
points that:
|
34 |
+
• Are core curriculum concepts typically taught in standard courses,
|
35 |
+
• Are precise and measurable (not vague like "understanding math"),
|
36 |
+
• Are essential building blocks needed to solve this problem,
|
37 |
+
• Represent fundamental principles rather than problem-specific techniques.
|
38 |
+
Think through your analysis step by step, then format your response as a Python code snippet
|
39 |
+
containing a list of {num_concepts} strings, where each string clearly describes one fundamental
|
40 |
+
knowledge point."""
|
41 |
+
messages = [{"role": "system", "content": system_prompt}, {"role": "user", "content": prompt}]
|
42 |
+
one_prompt = tokenizer.apply_chat_template(messages, add_generation_prompt=True,tokenize=False)
|
43 |
+
|
44 |
+
prompts.append(one_prompt)
|
45 |
+
|
46 |
+
outputs = llm.generate(prompts=prompts, sampling_params=sampling_params)
|
47 |
+
|
48 |
+
concepts_data = []
|
49 |
+
for i in range(len(outputs)):
|
50 |
+
one_data = json.loads(lines[i])
|
51 |
+
output = outputs[i].outputs[0].text
|
52 |
+
one_data['concepts_output'] = output
|
53 |
+
concepts_data.append(one_data)
|
54 |
+
|
55 |
+
with open(f'get_concept_right_{args.start}_{args.end}.json','w',encoding='utf-8') as f:
|
56 |
+
for one in concepts_data:
|
57 |
+
f.write(json.dumps(one,ensure_ascii=False)+"\n")
|
58 |
+
|
59 |
+
|
right_data_with_gold_shuffle.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e530e86d7468ea786018615a1f5db951785f7c2c1e89fc567b1ae8504ca0f60d
|
3 |
+
size 1666288201
|