Files changed (1) hide show
  1. README.md +181 -167
README.md CHANGED
@@ -1,168 +1,182 @@
1
- ---
2
- library_name: peft
3
- license: apache-2.0
4
- base_model: Qwen/Qwen2.5-0.5B
5
- tags:
6
- - axolotl
7
- - generated_from_trainer
8
- model-index:
9
- - name: e7732a70-ca77-4feb-8897-396abc6097f1
10
- results: []
11
- ---
12
-
13
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
- should probably proofread and complete it, then remove this comment. -->
15
-
16
- [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
17
- <details><summary>See axolotl config</summary>
18
-
19
- axolotl version: `0.4.1`
20
- ```yaml
21
- adapter: lora
22
- base_model: Qwen/Qwen2.5-0.5B
23
- bf16: auto
24
- chat_template: llama3
25
- cosine_min_lr_ratio: 0.1
26
- data_processes: 4
27
- dataset_prepared_path: null
28
- datasets:
29
- - data_files:
30
- - 3055aeccdac79880_train_data.json
31
- ds_type: json
32
- field: source
33
- num_proc: 4
34
- path: /workspace/input_data/3055aeccdac79880_train_data.json
35
- streaming: true
36
- type: completion
37
- debug: null
38
- deepspeed: null
39
- device_map: balanced
40
- do_eval: true
41
- early_stopping_patience: 1
42
- eval_batch_size: 1
43
- eval_sample_packing: false
44
- eval_steps: 25
45
- evaluation_strategy: steps
46
- flash_attention: false
47
- fp16: null
48
- fsdp: null
49
- fsdp_config: null
50
- gradient_accumulation_steps: 16
51
- gradient_checkpointing: true
52
- group_by_length: true
53
- hub_model_id: dsakerkwq/e7732a70-ca77-4feb-8897-396abc6097f1
54
- hub_strategy: checkpoint
55
- hub_token: null
56
- learning_rate: 0.0001
57
- load_in_4bit: false
58
- load_in_8bit: false
59
- local_rank: null
60
- logging_steps: 1
61
- lora_alpha: 64
62
- lora_dropout: 0.05
63
- lora_fan_in_fan_out: null
64
- lora_model_dir: null
65
- lora_r: 32
66
- lora_target_linear: true
67
- lora_target_modules:
68
- - q_proj
69
- - v_proj
70
- lr_scheduler: cosine
71
- max_grad_norm: 1.0
72
- max_memory:
73
- 0: 75GB
74
- 1: 75GB
75
- 2: 75GB
76
- 3: 75GB
77
- max_steps: 50
78
- micro_batch_size: 2
79
- mixed_precision: bf16
80
- mlflow_experiment_name: /tmp/3055aeccdac79880_train_data.json
81
- model_type: AutoModelForCausalLM
82
- num_epochs: 3
83
- optim_args:
84
- adam_beta1: 0.9
85
- adam_beta2: 0.95
86
- adam_epsilon: 1e-5
87
- optimizer: adamw_torch
88
- output_dir: miner_id_24
89
- pad_to_sequence_len: true
90
- resume_from_checkpoint: null
91
- s2_attention: null
92
- sample_packing: false
93
- save_steps: 25
94
- save_strategy: steps
95
- sequence_len: 2048
96
- strict: false
97
- tf32: false
98
- tokenizer_type: AutoTokenizer
99
- torch_compile: false
100
- train_on_inputs: false
101
- trust_remote_code: true
102
- val_set_size: 50
103
- wandb_entity: null
104
- wandb_mode: online
105
- wandb_name: e7732a70-ca77-4feb-8897-396abc6097f1
106
- wandb_project: Public_TuningSN
107
- wandb_runid: e7732a70-ca77-4feb-8897-396abc6097f1
108
- warmup_ratio: 0.04
109
- weight_decay: 0.01
110
- xformers_attention: null
111
-
112
- ```
113
-
114
- </details><br>
115
-
116
- # e7732a70-ca77-4feb-8897-396abc6097f1
117
-
118
- This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B](https://huggingface.co/Qwen/Qwen2.5-0.5B) on the None dataset.
119
- It achieves the following results on the evaluation set:
120
- - Loss: 0.1251
121
-
122
- ## Model description
123
-
124
- More information needed
125
-
126
- ## Intended uses & limitations
127
-
128
- More information needed
129
-
130
- ## Training and evaluation data
131
-
132
- More information needed
133
-
134
- ## Training procedure
135
-
136
- ### Training hyperparameters
137
-
138
- The following hyperparameters were used during training:
139
- - learning_rate: 0.0001
140
- - train_batch_size: 2
141
- - eval_batch_size: 1
142
- - seed: 42
143
- - distributed_type: multi-GPU
144
- - num_devices: 4
145
- - gradient_accumulation_steps: 16
146
- - total_train_batch_size: 128
147
- - total_eval_batch_size: 4
148
- - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
149
- - lr_scheduler_type: cosine
150
- - lr_scheduler_warmup_steps: 2
151
- - training_steps: 50
152
-
153
- ### Training results
154
-
155
- | Training Loss | Epoch | Step | Validation Loss |
156
- |:-------------:|:------:|:----:|:---------------:|
157
- | 3.8364 | 0.0004 | 1 | 3.8023 |
158
- | 0.3892 | 0.0097 | 25 | 0.1337 |
159
- | 0.5574 | 0.0194 | 50 | 0.1251 |
160
-
161
-
162
- ### Framework versions
163
-
164
- - PEFT 0.13.2
165
- - Transformers 4.46.0
166
- - Pytorch 2.5.0+cu124
167
- - Datasets 3.0.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
168
  - Tokenizers 0.20.1
 
1
+ ---
2
+ library_name: peft
3
+ license: apache-2.0
4
+ base_model: Qwen/Qwen2.5-0.5B
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ language:
9
+ - zho
10
+ - eng
11
+ - fra
12
+ - spa
13
+ - por
14
+ - deu
15
+ - ita
16
+ - rus
17
+ - jpn
18
+ - kor
19
+ - vie
20
+ - tha
21
+ - ara
22
+ model-index:
23
+ - name: e7732a70-ca77-4feb-8897-396abc6097f1
24
+ results: []
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
31
+ <details><summary>See axolotl config</summary>
32
+
33
+ axolotl version: `0.4.1`
34
+ ```yaml
35
+ adapter: lora
36
+ base_model: Qwen/Qwen2.5-0.5B
37
+ bf16: auto
38
+ chat_template: llama3
39
+ cosine_min_lr_ratio: 0.1
40
+ data_processes: 4
41
+ dataset_prepared_path: null
42
+ datasets:
43
+ - data_files:
44
+ - 3055aeccdac79880_train_data.json
45
+ ds_type: json
46
+ field: source
47
+ num_proc: 4
48
+ path: /workspace/input_data/3055aeccdac79880_train_data.json
49
+ streaming: true
50
+ type: completion
51
+ debug: null
52
+ deepspeed: null
53
+ device_map: balanced
54
+ do_eval: true
55
+ early_stopping_patience: 1
56
+ eval_batch_size: 1
57
+ eval_sample_packing: false
58
+ eval_steps: 25
59
+ evaluation_strategy: steps
60
+ flash_attention: false
61
+ fp16: null
62
+ fsdp: null
63
+ fsdp_config: null
64
+ gradient_accumulation_steps: 16
65
+ gradient_checkpointing: true
66
+ group_by_length: true
67
+ hub_model_id: dsakerkwq/e7732a70-ca77-4feb-8897-396abc6097f1
68
+ hub_strategy: checkpoint
69
+ hub_token: null
70
+ learning_rate: 0.0001
71
+ load_in_4bit: false
72
+ load_in_8bit: false
73
+ local_rank: null
74
+ logging_steps: 1
75
+ lora_alpha: 64
76
+ lora_dropout: 0.05
77
+ lora_fan_in_fan_out: null
78
+ lora_model_dir: null
79
+ lora_r: 32
80
+ lora_target_linear: true
81
+ lora_target_modules:
82
+ - q_proj
83
+ - v_proj
84
+ lr_scheduler: cosine
85
+ max_grad_norm: 1.0
86
+ max_memory:
87
+ 0: 75GB
88
+ 1: 75GB
89
+ 2: 75GB
90
+ 3: 75GB
91
+ max_steps: 50
92
+ micro_batch_size: 2
93
+ mixed_precision: bf16
94
+ mlflow_experiment_name: /tmp/3055aeccdac79880_train_data.json
95
+ model_type: AutoModelForCausalLM
96
+ num_epochs: 3
97
+ optim_args:
98
+ adam_beta1: 0.9
99
+ adam_beta2: 0.95
100
+ adam_epsilon: 1e-5
101
+ optimizer: adamw_torch
102
+ output_dir: miner_id_24
103
+ pad_to_sequence_len: true
104
+ resume_from_checkpoint: null
105
+ s2_attention: null
106
+ sample_packing: false
107
+ save_steps: 25
108
+ save_strategy: steps
109
+ sequence_len: 2048
110
+ strict: false
111
+ tf32: false
112
+ tokenizer_type: AutoTokenizer
113
+ torch_compile: false
114
+ train_on_inputs: false
115
+ trust_remote_code: true
116
+ val_set_size: 50
117
+ wandb_entity: null
118
+ wandb_mode: online
119
+ wandb_name: e7732a70-ca77-4feb-8897-396abc6097f1
120
+ wandb_project: Public_TuningSN
121
+ wandb_runid: e7732a70-ca77-4feb-8897-396abc6097f1
122
+ warmup_ratio: 0.04
123
+ weight_decay: 0.01
124
+ xformers_attention: null
125
+
126
+ ```
127
+
128
+ </details><br>
129
+
130
+ # e7732a70-ca77-4feb-8897-396abc6097f1
131
+
132
+ This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B](https://huggingface.co/Qwen/Qwen2.5-0.5B) on the None dataset.
133
+ It achieves the following results on the evaluation set:
134
+ - Loss: 0.1251
135
+
136
+ ## Model description
137
+
138
+ More information needed
139
+
140
+ ## Intended uses & limitations
141
+
142
+ More information needed
143
+
144
+ ## Training and evaluation data
145
+
146
+ More information needed
147
+
148
+ ## Training procedure
149
+
150
+ ### Training hyperparameters
151
+
152
+ The following hyperparameters were used during training:
153
+ - learning_rate: 0.0001
154
+ - train_batch_size: 2
155
+ - eval_batch_size: 1
156
+ - seed: 42
157
+ - distributed_type: multi-GPU
158
+ - num_devices: 4
159
+ - gradient_accumulation_steps: 16
160
+ - total_train_batch_size: 128
161
+ - total_eval_batch_size: 4
162
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
163
+ - lr_scheduler_type: cosine
164
+ - lr_scheduler_warmup_steps: 2
165
+ - training_steps: 50
166
+
167
+ ### Training results
168
+
169
+ | Training Loss | Epoch | Step | Validation Loss |
170
+ |:-------------:|:------:|:----:|:---------------:|
171
+ | 3.8364 | 0.0004 | 1 | 3.8023 |
172
+ | 0.3892 | 0.0097 | 25 | 0.1337 |
173
+ | 0.5574 | 0.0194 | 50 | 0.1251 |
174
+
175
+
176
+ ### Framework versions
177
+
178
+ - PEFT 0.13.2
179
+ - Transformers 4.46.0
180
+ - Pytorch 2.5.0+cu124
181
+ - Datasets 3.0.1
182
  - Tokenizers 0.20.1