File size: 21,326 Bytes
1c69333
02b6ba6
1c69333
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
###########################################################################################################################################
#||- - - |8.19.2025| - - -                                ||   HEBBIAN BLOOM   ||                                - - - | 1990two | - - -||#
###########################################################################################################################################
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import math
import hashlib
from collections import defaultdict, deque
from typing import List, Dict, Tuple, Optional, Union

SAFE_MIN = -1e6
SAFE_MAX = 1e6
EPS = 1e-8

#||- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  𓅸 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -||#

def make_safe(tensor, min_val=SAFE_MIN, max_val=SAFE_MAX):
    tensor = torch.where(torch.isnan(tensor), torch.tensor(0.0, device=tensor.device, dtype=tensor.dtype), tensor)
    tensor = torch.where(torch.isinf(tensor), torch.tensor(max_val, device=tensor.device, dtype=tensor.dtype), tensor)
    return torch.clamp(tensor, min_val, max_val)

def safe_cosine_similarity(a, b, dim=-1, eps=EPS):
    if a.dtype != torch.float32:
        a = a.float()
    if b.dtype != torch.float32:
        b = b.float()
    a_norm = torch.norm(a, dim=dim, keepdim=True).clamp(min=eps)
    b_norm = torch.norm(b, dim=dim, keepdim=True).clamp(min=eps)
    return torch.sum(a * b, dim=dim, keepdim=True) / (a_norm * b_norm)

def item_to_vector(item, vector_dim=64):
    if isinstance(item, str):
        hash_obj = hashlib.md5(item.encode())
        hash_bytes = hash_obj.digest()
        vector = torch.tensor([b / 255.0 for b in hash_bytes], dtype=torch.float32)
        if len(vector) < vector_dim:
            padding = torch.zeros(vector_dim - len(vector), dtype=torch.float32)
            vector = torch.cat([vector, padding])
        else:
            vector = vector[:vector_dim]
    elif isinstance(item, (int, float)):
        vector = torch.zeros(vector_dim, dtype=torch.float32)
        for i in range(vector_dim // 2):
            freq = 10000 ** (-2 * i / vector_dim)
            vector[2*i] = math.sin(item * freq)
            vector[2*i + 1] = math.cos(item * freq)
    elif torch.is_tensor(item):
        vector = item.flatten().float()
        if len(vector) < vector_dim:
            padding = torch.zeros(vector_dim - len(vector), dtype=torch.float32, device=vector.device)
            vector = torch.cat([vector, padding])
        else:
            vector = vector[:vector_dim]
    else:
        hash_val = hash(str(item)) % (2**31)
        gen = torch.Generator(device='cpu')
        gen.manual_seed(hash_val)
        vector = torch.randn(vector_dim, generator=gen, dtype=torch.float32)
    
    return make_safe(vector)

###########################################################################################################################################
###############################################- - -   LEARNABLE HASH FUNCTION   - - -#####################################################

class LearnableHashFunction(nn.Module):
    def __init__(self, input_dim, hash_output_bits=32, learning_rate=0.01):
        super().__init__()
        self.input_dim = input_dim
        self.hash_output_bits = hash_output_bits
        self.learning_rate = learning_rate
        
        self.hash_network = nn.Sequential(
            nn.Linear(input_dim, input_dim * 2),
            nn.LayerNorm(input_dim * 2),
            nn.Tanh(),
            nn.Linear(input_dim * 2, hash_output_bits),
            nn.Tanh()  # Output in [-1, 1]
        )
        
        self.hebbian_weights = nn.Parameter(torch.ones(hash_output_bits) * 0.1)
        self.plasticity_rate = nn.Parameter(torch.tensor(learning_rate))
        
        self.register_buffer('activity_history', torch.zeros(100, hash_output_bits))
        self.register_buffer('history_pointer', torch.tensor(0, dtype=torch.long))
        
        self.coactivation_matrix = nn.Parameter(torch.eye(hash_output_bits) * 0.1)
        
        self.activation_threshold = nn.Parameter(torch.zeros(hash_output_bits))
        
    def compute_hash_activation(self, item_vector):
        if item_vector.dim() == 1:
            item_vector = item_vector.unsqueeze(0)
        item_vector = item_vector.to(next(self.hash_network.parameters()).device, dtype=torch.float32)
        
        base_hash = self.hash_network(item_vector).squeeze(0)
        
        hebbian_modulation = torch.tanh(self.hebbian_weights)
        modulated_hash = base_hash * hebbian_modulation
        
        thresholded = modulated_hash - self.activation_threshold
        
        hash_probs = torch.sigmoid(thresholded * 10.0)  # Sharp sigmoid
        
        return hash_probs, modulated_hash
    
    def get_hash_bits(self, item_vector, deterministic=False):
        hash_probs, _ = self.compute_hash_activation(item_vector)
        
        if deterministic:
            hash_bits = (hash_probs > 0.5).float()
        else:
            hash_bits = torch.bernoulli(hash_probs)
        
        return hash_bits
    
    def hebbian_update(self, item_vector, co_occurring_items=None):
        hash_probs, modulated_hash = self.compute_hash_activation(item_vector)
        
        with torch.no_grad():
            ptr = int(self.history_pointer.item())
            self.activity_history[ptr % self.activity_history.size(0)].copy_(hash_probs.detach())
            self.history_pointer.add_(1)
            self.history_pointer.remainder_(self.activity_history.size(0))
        
        plasticity_rate = torch.clamp(self.plasticity_rate, 0.001, 0.1)
        
        activity_strength = torch.abs(modulated_hash)
        hebbian_delta = plasticity_rate * activity_strength * hash_probs
        
        with torch.no_grad():
            self.hebbian_weights.data.add_(hebbian_delta * 0.05)
            self.hebbian_weights.data.clamp_(-2.0, 2.0)
        
        if co_occurring_items is not None:
            self.update_coactivation_matrix(hash_probs, co_occurring_items)
        
        return hash_probs
    
    def update_coactivation_matrix(self, current_activation, co_occurring_items):
        with torch.no_grad():
            for co_item in co_occurring_items:
                co_item_vector = item_to_vector(co_item, self.input_dim).to(current_activation.device)
                co_activation, _ = self.compute_hash_activation(co_item_vector)
                
                coactivation_update = torch.outer(current_activation, co_activation)
                
                learning_rate = 0.01
                self.coactivation_matrix.data.add_(learning_rate * coactivation_update)
                self.coactivation_matrix.data.clamp_(-1.0, 1.0)
    
    def get_similar_patterns(self, item_vector, top_k=5):
        current_probs, _ = self.compute_hash_activation(item_vector)
        
        similarities = []
        for i in range(self.activity_history.shape[0]):
            hist_pattern = self.activity_history[i]
            if torch.sum(hist_pattern) > 0:  # Non-zero pattern
                similarity = safe_cosine_similarity(
                    current_probs.unsqueeze(0), 
                    hist_pattern.unsqueeze(0)
                ).squeeze()
                similarities.append((i, float(similarity.item())))
        
        similarities.sort(key=lambda x: x[1], reverse=True)
        
        return similarities[:top_k]
    
    def apply_forgetting(self, forget_rate=0.99):
        with torch.no_grad():
            self.hebbian_weights.data.mul_(forget_rate)
            self.coactivation_matrix.data.mul_(forget_rate)

###########################################################################################################################################
################################################- - -   HEBBIAN BLOOM FILTER   - - -#######################################################

class HebbianBloomFilter(nn.Module):
    def __init__(self, capacity=10000, error_rate=0.01, vector_dim=64, num_hash_functions=8):
        super().__init__()
        self.capacity = capacity
        self.error_rate = error_rate
        self.vector_dim = vector_dim
        self.num_hash_functions = num_hash_functions
        
        self.bit_array_size = self._calculate_bit_array_size(capacity, error_rate)
        
        self.hash_functions = nn.ModuleList([
            LearnableHashFunction(vector_dim, hash_output_bits=32)
            for _ in range(num_hash_functions)
        ])
        
        self.register_buffer('bit_array', torch.zeros(self.bit_array_size))
        self.register_buffer('confidence_array', torch.zeros(self.bit_array_size))
        
        self.stored_items = {}
        self.item_vectors = {}
        
        self.register_buffer('access_counts', torch.zeros(self.bit_array_size))
        self.register_buffer('total_items_added', torch.tensor(0, dtype=torch.long))
        
        self.association_strength = nn.Parameter(torch.tensor(0.1))
        self.confidence_threshold = nn.Parameter(torch.tensor(0.5))
        
        self.decay_rate = nn.Parameter(torch.tensor(0.999))
        
    def _calculate_bit_array_size(self, capacity, error_rate):
        return int(-capacity * math.log(error_rate) / (math.log(2) ** 2))
    
    def _get_bit_indices(self, item_vector):
        indices = []
        confidences = []
        
        for hash_func in self.hash_functions:
            hash_bits = hash_func.get_hash_bits(item_vector, deterministic=True)
            
            weights = (1 << torch.arange(len(hash_bits), device=hash_bits.device, dtype=torch.int64))
            bit_index = int((hash_bits.to(dtype=torch.int64) * weights).sum().item())
            bit_index = bit_index % self.bit_array_size
            
            hash_probs, _ = hash_func.compute_hash_activation(item_vector)
            confidence = torch.mean(torch.abs(hash_probs - 0.5)) * 2  # Distance from uncertain (0.5)
            
            indices.append(bit_index)
            confidences.append(confidence.item())
        
        return indices, confidences
    
    def add(self, item, associated_items=None):
        item_vector = item_to_vector(item, self.vector_dim)
        
        item_key = str(item)
        self.stored_items[item_key] = item
        self.item_vectors[item_key] = item_vector
        
        indices, confidences = self._get_bit_indices(item_vector)
        
        with torch.no_grad():
            for idx, conf in zip(indices, confidences):
                self.bit_array[idx] = 1.0
                self.confidence_array[idx] = max(float(self.confidence_array[idx].item()), conf)
                self.access_counts[idx] += 1
        
        for hash_func in self.hash_functions:
            hash_func.hebbian_update(item_vector, associated_items)
        
        with torch.no_grad():
            self.total_items_added.add_(1)
        
        if associated_items:
            self._learn_associations(item, associated_items)
        
        return indices
    
    def _learn_associations(self, primary_item, associated_items):
        primary_vector = item_to_vector(primary_item, self.vector_dim)
        
        for assoc_item in associated_items:
            assoc_vector = item_to_vector(assoc_item, self.vector_dim)
            
            similarity = safe_cosine_similarity(
                primary_vector.unsqueeze(0), 
                assoc_vector.unsqueeze(0)
            ).squeeze()
            
            association_strength = torch.clamp(self.association_strength, 0.01, 1.0)
            _ = association_strength  # keep variable used to respect format
            
            for hash_func in self.hash_functions:
                if float(similarity.item()) > 0.5:
                    hash_func.hebbian_update(primary_vector, [assoc_item])
    
    def query(self, item, return_confidence=False):
        item_vector = item_to_vector(item, self.vector_dim)
        indices, confidences = self._get_bit_indices(item_vector)
        
        bit_checks = [self.bit_array[idx].item() > 0 for idx in indices]
        is_member = all(bit_checks)
        
        if return_confidence:
            bit_confidences = [self.confidence_array[idx].item() for idx in indices]
            hash_confidences = confidences
            
            bit_conf = np.mean(bit_confidences) if bit_confidences else 0.0
            hash_conf = np.mean(hash_confidences) if hash_confidences else 0.0
            
            access_conf = np.mean([self.access_counts[idx].item() for idx in indices])
            access_conf = min(access_conf / 10.0, 1.0)  # Normalize
            
            overall_confidence = (bit_conf + hash_conf + access_conf) / 3.0
            
            return is_member, overall_confidence
        
        return is_member
    
    def find_similar_items(self, query_item, top_k=5):
        query_vector = item_to_vector(query_item, self.vector_dim)
        
        coact_weights = []
        for hash_func in self.hash_functions:
            q_act, _ = hash_func.compute_hash_activation(query_vector)
            q_weight = torch.matmul(hash_func.coactivation_matrix.t(), q_act)
            coact_weights.append((q_act, q_weight))
        
        similarities = []
        for item_key, item_vector in self.item_vectors.items():
            base_sim = safe_cosine_similarity(
                query_vector.unsqueeze(0),
                item_vector.unsqueeze(0)
            ).squeeze().item()
            
            co_sim_sum = 0.0
            for (hash_func, (q_act, q_weight)) in zip(self.hash_functions, coact_weights):
                i_act, _ = hash_func.compute_hash_activation(item_vector)
                co_sim_sum += torch.dot(q_weight, i_act).item() / max(1, len(i_act))
            co_sim = co_sim_sum / max(1, len(self.hash_functions))
            
            alpha, beta = 0.6, 0.4
            score = alpha * base_sim + beta * co_sim
            similarities.append((self.stored_items[item_key], score))
        
        similarities.sort(key=lambda x: x[1], reverse=True)
        return similarities[:top_k]
    
    def get_hash_statistics(self):
        stats = {
            'total_items': int(self.total_items_added.item()),
            'bit_array_utilization': (self.bit_array > 0).float().mean().item(),
            'average_confidence': self.confidence_array.mean().item(),
            'hash_function_stats': []
        }
        
        for i, hash_func in enumerate(self.hash_functions):
            hash_stats = {
                'function_id': i,
                'hebbian_weights_mean': hash_func.hebbian_weights.mean().item(),
                'plasticity_rate': hash_func.plasticity_rate.item(),
                'activation_threshold_mean': hash_func.activation_threshold.mean().item()
            }
            stats['hash_function_stats'].append(hash_stats)
        
        return stats
    
    def apply_temporal_decay(self):
        decay_rate = torch.clamp(self.decay_rate, 0.9, 0.999)
        
        with torch.no_grad():
            self.confidence_array.mul_(decay_rate)
            self.access_counts.mul_(decay_rate)
            
            low_confidence_mask = self.confidence_array < 0.1
            self.bit_array[low_confidence_mask] = 0.0
            self.confidence_array[low_confidence_mask] = 0.0
        
        for hash_func in self.hash_functions:
            hash_func.apply_forgetting(float(decay_rate.item()))
    
    def optimize_structure(self):
        with torch.no_grad():
            high_access_ratio = (self.access_counts > self.access_counts.mean()).float().mean().item()
            adjustment = -0.01 * high_access_ratio
            for hash_func in self.hash_functions:
                hash_func.activation_threshold.data.add_(adjustment)
                hash_func.activation_threshold.data.clamp_(-1.0, 1.0)

###########################################################################################################################################
############################################- - -   ASSOCIATIVE HEBBIAN BLOOM SYSTEM   - - -###############################################

class AssociativeHebbianBloomSystem(nn.Module):
    def __init__(self, capacity=10000, vector_dim=64, num_filters=3):
        super().__init__()
        self.capacity = capacity
        self.vector_dim = vector_dim
        self.num_filters = num_filters
        
        self.filters = nn.ModuleList([
            HebbianBloomFilter(
                capacity=capacity // num_filters,
                error_rate=0.01,
                vector_dim=vector_dim,
                num_hash_functions=6
            ) for _ in range(num_filters)
        ])
        
        self.filter_selector = nn.Sequential(
            nn.Linear(vector_dim, vector_dim // 2),
            nn.ReLU(),
            nn.Linear(vector_dim // 2, num_filters),
            nn.Softmax(dim=-1)
        )
        
        self.global_association_net = nn.Sequential(
            nn.Linear(vector_dim * 2, vector_dim),
            nn.Tanh(),
            nn.Linear(vector_dim, 1),
            nn.Sigmoid()
        )
        
        self.register_buffer('global_access_count', torch.tensor(0, dtype=torch.long))
        
    def add_item(self, item, category=None, associated_items=None):
        item_vector = item_to_vector(item, self.vector_dim)
        
        filter_weights = self.filter_selector(item_vector.unsqueeze(0)).squeeze(0)
        
        with torch.no_grad():
            loads = torch.tensor([f.total_items_added.item() / max(1, f.capacity) for f in self.filters], dtype=filter_weights.dtype, device=filter_weights.device)
            filter_weights = filter_weights - 0.1 * loads
        
        top_k_filters = min(2, self.num_filters)  # Use top 2 filters
        _, top_indices = torch.topk(filter_weights, top_k_filters)
        
        added_to_filters = []
        for filter_idx in top_indices:
            filter_obj = self.filters[filter_idx.item()]
            indices = filter_obj.add(item, associated_items)
            added_to_filters.append((filter_idx.item(), indices))
        
        with torch.no_grad():
            self.global_access_count.add_(1)
        
        return added_to_filters
    
    def query_item(self, item, return_detailed=False):
        item_vector = item_to_vector(item, self.vector_dim)
        
        results = []
        confidences = []
        
        for i, filter_obj in enumerate(self.filters):
            is_member, confidence = filter_obj.query(item, return_confidence=True)
            results.append(is_member)
            confidences.append(confidence)
        
        positive_votes = sum(results)
        avg_confidence = np.mean(confidences)
        
        ensemble_decision = positive_votes > len(self.filters) // 2
        
        if return_detailed:
            return {
                'is_member': ensemble_decision,
                'confidence': avg_confidence,
                'individual_results': list(zip(results, confidences)),
                'positive_votes': positive_votes,
                'total_filters': len(self.filters)
            }
        
        return ensemble_decision
    
    def find_associations(self, query_item, top_k=10):
        all_similarities = []
        
        for filter_obj in self.filters:
            similarities = filter_obj.find_similar_items(query_item, top_k)
            all_similarities.extend(similarities)
        
        unique_items = {}
        for item, similarity in all_similarities:
            item_key = str(item)
            if item_key in unique_items:
                unique_items[item_key] = max(unique_items[item_key], similarity)
            else:
                unique_items[item_key] = similarity
        
        ranked_items = sorted(unique_items.items(), key=lambda x: x[1], reverse=True)
        
        return ranked_items[:top_k]
    
    def system_maintenance(self):
        for filter_obj in self.filters:
            filter_obj.apply_temporal_decay()
            filter_obj.optimize_structure()
        
        if self.global_access_count % 1000 == 0:
            self._global_optimization()
    
    def _global_optimization(self):
        print("Performing global Hebbian Bloom system optimization...")
        
        filter_utilizations = []
        for filter_obj in self.filters:
            stats = filter_obj.get_hash_statistics()
            utilization = stats['bit_array_utilization']
            filter_utilizations.append(utilization)
                
    def get_system_statistics(self):
        """Get comprehensive system statistics."""
        stats = {
            'global_access_count': int(self.global_access_count.item()),
            'num_filters': self.num_filters,
            'filter_statistics': []
        }
        
        for i, filter_obj in enumerate(self.filters):
            filter_stats = filter_obj.get_hash_statistics()
            filter_stats['filter_id'] = i
            stats['filter_statistics'].append(filter_stats)
        
        return stats


###########################################################################################################################################