Model card for REVA-QCAV

A DEtection TRansformer (DETR) model with a ResNet-50 backbone (facebook/detr-resnet-50) finetuned on a custom photogrammetry calibration sphere dataset.

Model Usage

Object Detection (using transformers)

from transformers import AutoImageProcessor, AutoModelForObjectDetection
from huggingface_hub import hf_hub_download
from PIL import Image
import torch

# download example image
img_path = hf_hub_download(repo_id="1aurent/REVA-QCAV", filename="examples/chevaux.jpg")
img = Image.open(img_path)

# transform image using image_processor
image_processor = AutoImageProcessor.from_pretrained("1aurent/REVA-QCAV")
data = image_processor(img, return_tensors="pt")

# get outputs from the model
model = AutoModelForObjectDetection.from_pretrained("1aurent/REVA-QCAV")
with torch.no_grad():
  output = model(**data)

# use image_processor post processing
img_CHW = torch.tensor([img.height, img.width]).unsqueeze(0)
output_processed = image_processor.post_process_object_detection(output, threshold=0.9, target_sizes=img_CHW)

Object Detection (using onnxruntime)

from transformers.models.detr.modeling_detr import DetrObjectDetectionOutput
from transformers import AutoImageProcessor
from huggingface_hub import hf_hub_download
import onnxruntime as ort
from PIL import Image
import torch

# download onnx and start inference session
onnx_path = hf_hub_download(repo_id="1aurent/REVA-QCAV", filename="model.onnx")
session = ort.InferenceSession(onnx_path)

# download example image
img_path = hf_hub_download(repo_id="1aurent/REVA-QCAV", filename="examples/chevaux.jpg")
img = Image.open(img_path)

# transform image using image_processor
image_processor = AutoImageProcessor.from_pretrained("1aurent/REVA-QCAV")
data = image_processor(img, return_tensors="np").data

# get logits and bbox predictions using onnx session
logits, pred_boxes = session.run(
  output_names=["logits", "pred_boxes"],
  input_feed=data,
)

# wrap outputs inside DetrObjectDetectionOutput
output = DetrObjectDetectionOutput(
  logits=torch.tensor(logits),
  pred_boxes=torch.tensor(pred_boxes),
)

# use image_processor post processing
img_CHW = torch.tensor([img.height, img.width]).unsqueeze(0)
output_processed = image_processor.post_process_object_detection(output, threshold=0.9, target_sizes=img_CHW)

Citation

@article{reva-qcav,
  author  = {Laurent Fainsin and Jean Mélou and Lilian Calvet and Antoine Laurent and Axel Carlier and Jean-Denis Durou},
  title   = {Neural sphere detection in images for lighting calibration},
  journal = {QCAV},
  year    = {2023},
  url     = {https://hal.science/hal-04160733}
}
Downloads last month
23
Safetensors
Model size
41.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for 1aurent/REVA-QCAV

Finetuned
(462)
this model