3728km's picture
End of training
6237aef verified
metadata
library_name: transformers
base_model: airesearch/wangchanberta-base-att-spm-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
model-index:
  - name: fined-tune-thai-sentiment
    results: []

fined-tune-thai-sentiment

This model is a fine-tuned version of airesearch/wangchanberta-base-att-spm-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3544
  • Accuracy: 0.9282
  • F1-score: 0.9278
  • Precision: 0.9276
  • Recall: 0.9282

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 181
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1-score Precision Recall
0.8746 1.0 91 0.8613 0.6133 0.4662 0.3761 0.6133
0.8086 2.0 182 0.8758 0.5746 0.4955 0.4768 0.5746
0.9223 3.0 273 0.9218 0.6133 0.4662 0.3761 0.6133
0.8561 4.0 364 0.7430 0.6630 0.5899 0.6325 0.6630
0.6694 5.0 455 0.5335 0.7845 0.7507 0.7289 0.7845
0.5792 6.0 546 0.4365 0.8287 0.8227 0.8239 0.8287
0.3046 7.0 637 0.4033 0.8840 0.8834 0.8930 0.8840
0.2004 8.0 728 0.3544 0.9282 0.9278 0.9276 0.9282
0.1443 9.0 819 0.4025 0.9171 0.9180 0.9199 0.9171
0.0765 10.0 910 0.4116 0.9227 0.9238 0.9269 0.9227

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1