File size: 5,971 Bytes
4751db5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import os

os.environ["CUDA_VISIBLE_DEVICES"] = "0"
os.environ["HF_HOME"] = "../../cache/hgCache"
os.environ["TRANSFORMERS_CACHE"] = "../../cache/transformersCache/"

import glob
import logging
import sys
from collections import defaultdict

import numpy as np
import pytrec_eval
import tqdm, torch
import pandas as pd
from pylate import models, rank


document_length = 512

model_name_or_paths = [
    "9eren99/TrColBERT",
    "jinaai/jina-colbert-v2",
    "antoinelouis/colbert-xm",
]

datasetnames = [
    "fiqa2018",
    "climatefever",
    "dbpedia",
    "fever",
    "hotpotqa",
    # "msmarco",
    "nfcorpus",
    "nq",
    "quoraretrieval",
    "scidocs",
    "arguana",
    "scifact",
    "touche2020",
]
for datasetname in datasetnames:
    print("#############", datasetname, "##############")
    evalResultsDf = None
    for model_name_or_path in model_name_or_paths:
        torch.cuda.empty_cache()
        if "jinaai/jina-colbert-v2" == model_name_or_path:
            model = models.ColBERT(
                model_name_or_path=model_name_or_path,
                query_prefix="[QueryMarker]",
                document_prefix="[DocumentMarker]",
                attend_to_expansion_tokens=True,
                trust_remote_code=True,
                document_length=document_length,
            )
        elif "antoinelouis/colbert-xm" == model_name_or_path:
            model = models.ColBERT(model_name_or_path="antoinelouis/colbert-xm")
            language = "tr_TR"  # Use a code from https://huggingface.co/facebook/xmod-base#languages

            backbone = model[0].auto_model
            if backbone.__class__.__name__.lower().startswith("xmod"):
                backbone.set_default_language(language)
        else:
            model = models.ColBERT(
                model_name_or_path=model_name_or_path,
                document_length=document_length,
                attend_to_expansion_tokens=(
                    True if "attend" in model_name_or_path else False
                ),
            )

        model.eval()
        model.to("cuda")

        dfDocs = pd.read_parquet(
            f"datasets/{datasetname}/corpus/train-00000-of-00001.parquet"
        ).dropna()
        dfQueries = pd.read_parquet(
            f"datasets/{datasetname}/queries/train-00000-of-00001.parquet"
        ).dropna()

        if "99eren99/TrColBERT" == model_name_or_path:
            try:
                model.tokenizer.model_input_names.remove("token_type_ids")
            except:
                print(model_name_or_path)
            dfDocs.TurkishText = dfDocs.TurkishText.apply(
                lambda x: x.replace("İ", "i").replace("I", "ı").lower()
            )
            dfQueries.TurkishText = dfQueries.TurkishText.apply(
                lambda x: x.replace("İ", "i").replace("I", "ı").lower()
            )

        # Read test queries
        queries = []
        documents = []
        passage_cand = {}
        relevant_qid = []
        relevant_docs = defaultdict(lambda: defaultdict(int))

        # read corpus
        newId2oldId_Docs = {}
        for i, row in enumerate(dfDocs.values):
            documents.append(row[2])
            newId2oldId_Docs[i] = str(row[0])
            relevant_qid.append(str(row[0]))

        # read queries
        newId2oldId_Queries = {}
        for i, row in enumerate(dfQueries.values):
            queries.append(row[2])
            newId2oldId_Queries[i] = str(row[0])

            for j, rowDoc in enumerate(dfDocs.values):
                relevant_docs[str(row[0])][str(rowDoc[0])] = 0

        # read qrels
        dfQrels = pd.read_parquet(
            f"datasets/{datasetname}/qrels/train-00000-of-00001.parquet"
        )
        for i, row in enumerate(dfQrels.values):
            relevant_docs[str(row[0])][str(row[1])] = 1

        candidateIds = [[i for i in range(len(documents))]]

        queries_result_list = []
        run = {}

        documents_embeddings = model.encode(
            [documents], is_query=False, show_progress_bar=True
        )

        for i, query in enumerate(tqdm.tqdm(queries)):

            queries_embeddings = model.encode(
                [query],
                is_query=True,
            )

            reranked_documents = rank.rerank(
                documents_ids=candidateIds,
                queries_embeddings=queries_embeddings,
                documents_embeddings=documents_embeddings,
            )

            run[newId2oldId_Queries[i]] = {}
            for resDict in reranked_documents[0]:
                run[newId2oldId_Queries[i]][newId2oldId_Docs[resDict["id"]]] = float(
                    resDict["score"]
                )

        evaluator = pytrec_eval.RelevanceEvaluator(
            relevant_docs, pytrec_eval.supported_measures
        )
        scores = evaluator.evaluate(run)

        def print_line(measure, scope, value):
            print("{:25s}{:8s}{:.4f}".format(measure, scope, value))

        for query_id, query_measures in sorted(scores.items()):
            break
            for measure, value in sorted(query_measures.items()):
                print_line(measure, query_id, value)

        # Scope hack: use query_measures of last item in previous loop to
        # figure out all unique measure names.
        resultsColumns = ["model name"]
        resultsRow = [model_name_or_path]
        for measure in sorted(query_measures.keys()):
            resultsColumns.append(measure)
            resultsRow.append(
                pytrec_eval.compute_aggregated_measure(
                    measure,
                    [query_measures[measure] for query_measures in scores.values()],
                )
            )

        if evalResultsDf is None:
            evalResultsDf = pd.DataFrame(columns=resultsColumns)
        evalResultsDf.loc[-1] = resultsRow
        evalResultsDf.index = evalResultsDf.index + 1

    evalResultsDf.to_csv(f"resultsn/{datasetname}.csv", encoding="utf-8")