|
--- |
|
tags: |
|
- ColBERT |
|
- PyLate |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- loss:Distillation |
|
- turkish |
|
pipeline_tag: sentence-similarity |
|
library_name: PyLate |
|
--- |
|
|
|
# PyLate |
|
|
|
This is a [PyLate](https://github.com/lightonai/pylate) model trained. It maps sentences & paragraphs to sequences of 128-dimensional dense vectors and can be used for semantic textual similarity using the MaxSim operator. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** PyLate model |
|
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) --> |
|
- **Document Length:** 512 tokens |
|
- **Query Length:** 32 tokens |
|
- **Output Dimensionality:** 128 tokens |
|
- **Similarity Function:** MaxSim |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [PyLate Documentation](https://lightonai.github.io/pylate/) |
|
- **Repository:** [PyLate on GitHub](https://github.com/lightonai/pylate) |
|
- **Hugging Face:** [PyLate models on Hugging Face](https://huggingface.co/models?library=PyLate) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
ColBERT( |
|
(0): Transformer({'max_seq_length': 511, 'do_lower_case': False}) with Transformer model: ModernBertModel |
|
(1): Dense({'in_features': 768, 'out_features': 128, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'}) |
|
) |
|
``` |
|
# Evaluation |
|
nDCG and Recall scores of this model(out-of-domain predictions) and other multilingual late interaction retrieval models on [Tr-NanoBEIR](https://huggingface.co/datasets/99eren99/Tr-NanoBEIR). Test code and detailed metrics in ["./assets"](https://huggingface.co/99eren99/TrColBERT/tree/main/assets) |
|
<img src="https://huggingface.co/99eren99/TrColBERT/resolve/main/assets/scores.jpg" |
|
alt="drawing"/> |
|
|
|
## Usage |
|
First install required libraries (Flash Attention 2 supporting GPU is a must for consistency otherwise you need to mask query expansion tokens in the output layer manually): |
|
|
|
```bash |
|
pip install -U einops flash_attn |
|
pip install -U pylate |
|
``` |
|
|
|
Then normalize your text ---> lambda x: x.replace("İ", "i").replace("I", "ı").lower() |
|
|
|
### Retrieval |
|
|
|
PyLate provides a streamlined interface to index and retrieve documents using ColBERT models. The index leverages the Voyager HNSW index to efficiently handle document embeddings and enable fast retrieval. |
|
|
|
#### Indexing documents |
|
|
|
First, load the ColBERT model and initialize the Voyager index, then encode and index your documents: |
|
|
|
```python |
|
from pylate import indexes, models, retrieve |
|
|
|
# Step 1: Load the ColBERT model |
|
model = models.ColBERT( |
|
model_name_or_path="99eren99/TrColBERT", |
|
) |
|
try: |
|
model.tokenizer.model_input_names.remove("token_type_ids") |
|
except: |
|
pass |
|
model.eval() |
|
model.to("cuda") |
|
|
|
# Step 2: Initialize the Voyager index |
|
index = indexes.Voyager( |
|
index_folder="pylate-index", |
|
index_name="index", |
|
override=True, # This overwrites the existing index if any |
|
) |
|
|
|
# Step 3: Encode the documents |
|
documents_ids = ["1", "2", "3"] |
|
documents = ["document 1 text", "document 2 text", "document 3 text"] |
|
|
|
documents_embeddings = model.encode( |
|
documents, |
|
batch_size=32, |
|
is_query=False, # Ensure that it is set to False to indicate that these are documents, not queries |
|
show_progress_bar=True, |
|
) |
|
|
|
# Step 4: Add document embeddings to the index by providing embeddings and corresponding ids |
|
index.add_documents( |
|
documents_ids=documents_ids, |
|
documents_embeddings=documents_embeddings, |
|
) |
|
``` |
|
|
|
Note that you do not have to recreate the index and encode the documents every time. Once you have created an index and added the documents, you can re-use the index later by loading it: |
|
|
|
```python |
|
# To load an index, simply instantiate it with the correct folder/name and without overriding it |
|
index = indexes.Voyager( |
|
index_folder="pylate-index", |
|
index_name="index", |
|
) |
|
``` |
|
|
|
#### Retrieving top-k documents for queries |
|
|
|
Once the documents are indexed, you can retrieve the top-k most relevant documents for a given set of queries. |
|
To do so, initialize the ColBERT retriever with the index you want to search in, encode the queries and then retrieve the top-k documents to get the top matches ids and relevance scores: |
|
|
|
```python |
|
# Step 1: Initialize the ColBERT retriever |
|
retriever = retrieve.ColBERT(index=index) |
|
|
|
# Step 2: Encode the queries |
|
queries_embeddings = model.encode( |
|
["query for document 3", "query for document 1"], |
|
batch_size=32, |
|
is_query=True, # Ensure that it is set to True to indicate that these are queries |
|
show_progress_bar=True, |
|
) |
|
|
|
# Step 3: Retrieve top-k documents |
|
scores = retriever.retrieve( |
|
queries_embeddings=queries_embeddings, |
|
k=10, # Retrieve the top 10 matches for each query |
|
) |
|
``` |
|
|
|
### Reranking |
|
If you only want to use the ColBERT model to perform reranking on top of your first-stage retrieval pipeline without building an index, you can simply use rank function and pass the queries and documents to rerank: |
|
|
|
```python |
|
from pylate import rank, models |
|
|
|
queries = [ |
|
"query A", |
|
"query B", |
|
] |
|
|
|
documents = [ |
|
["document A", "document B"], |
|
["document 1", "document C", "document B"], |
|
] |
|
|
|
documents_ids = [ |
|
[1, 2], |
|
[1, 3, 2], |
|
] |
|
|
|
model = models.ColBERT( |
|
model_name_or_path=pylate_model_id, |
|
) |
|
|
|
queries_embeddings = model.encode( |
|
queries, |
|
is_query=True, |
|
) |
|
|
|
documents_embeddings = model.encode( |
|
documents, |
|
is_query=False, |
|
) |
|
|
|
reranked_documents = rank.rerank( |
|
documents_ids=documents_ids, |
|
queries_embeddings=queries_embeddings, |
|
documents_embeddings=documents_embeddings, |
|
) |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `per_device_train_batch_size`: 32 |
|
- `gradient_accumulation_steps`: 4 |
|
- `learning_rate`: 8e-05 |
|
- `num_train_epochs`: 4 |
|
- `warmup_ratio`: 0.05 |
|
- `bf16`: True |
|
- `tf32`: True |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: no |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 32 |
|
- `per_device_eval_batch_size`: 8 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 4 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 8e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 4 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.05 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: True |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: True |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: None |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `include_for_metrics`: [] |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `use_liger_kernel`: False |
|
- `eval_use_gather_object`: False |
|
- `average_tokens_across_devices`: False |
|
- `prompts`: None |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Framework Versions |
|
- Python: 3.10.16 |
|
- Sentence Transformers: 4.0.2 |
|
- PyLate: 1.1.7 |
|
- Transformers: 4.48.2 |
|
- PyTorch: 2.5.1+cu124 |
|
- Accelerate: 1.2.1 |
|
- Datasets: 2.21.0 |
|
- Tokenizers: 0.21.0 |
|
|
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084" |
|
} |
|
``` |
|
|
|
#### PyLate |
|
```bibtex |
|
@misc{PyLate, |
|
title={PyLate: Flexible Training and Retrieval for Late Interaction Models}, |
|
author={Chaffin, Antoine and Sourty, Raphaël}, |
|
url={https://github.com/lightonai/pylate}, |
|
year={2024} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |