Model description

This model is a fine-tuned version of bert-base-chinese for the purpose of medicine name recognition. We fine-tuned bert-base-chinese on a 500M dataset including 100K+ authorized medical articles on which we labeled all the medicine names. The model achieves 92% accuracy on our test dataset.

Intended use

>>> from transformers import (AutoModelForTokenClassification, AutoTokenizer)
>>> from transformers import pipeline

>>> hub_model_id = "9pinus/macbert-base-chinese-medicine-recognition"

>>> model = AutoModelForTokenClassification.from_pretrained(hub_model_id)
>>> tokenizer = AutoTokenizer.from_pretrained(hub_model_id)
>>> classifier = pipeline('ner', model=model, tokenizer=tokenizer)
>>> result = classifier("ε¦‚ζžœη—…ζƒ…θΎƒι‡οΌŒε―ι€‚ε½“ε£ζœη”²η‘ε”‘η‰‡γ€ηŽ―ι…―ηΊ’ιœ‰η΄ η‰‡γ€ε²ε“šηΎŽθΎ›η‰‡η­‰θ―η‰©θΏ›θ‘ŒζŠ—ζ„ŸζŸ“ι•‡η—›γ€‚")

>>> for item in result:
>>>     if item['entity'] == 1 or item['entity'] == 2:
>>>         print(item)

{'entity': 1, 'score': 0.99999595, 'index': 13, 'word': 'η”²', 'start': 12, 'end': 13}
{'entity': 2, 'score': 0.9999957, 'index': 14, 'word': '瑝', 'start': 13, 'end': 14}
{'entity': 2, 'score': 0.99999166, 'index': 15, 'word': 'ε”‘', 'start': 14, 'end': 15}
{'entity': 2, 'score': 0.99898833, 'index': 16, 'word': '片', 'start': 15, 'end': 16}
{'entity': 1, 'score': 0.9999864, 'index': 18, 'word': '环', 'start': 17, 'end': 18}
{'entity': 2, 'score': 0.99999404, 'index': 19, 'word': 'ι…―', 'start': 18, 'end': 19}
{'entity': 2, 'score': 0.99999475, 'index': 20, 'word': 'ηΊ’', 'start': 19, 'end': 20}
{'entity': 2, 'score': 0.9999964, 'index': 21, 'word': 'ιœ‰', 'start': 20, 'end': 21}
{'entity': 2, 'score': 0.9999951, 'index': 22, 'word': 'η΄ ', 'start': 21, 'end': 22}
{'entity': 2, 'score': 0.9990088, 'index': 23, 'word': '片', 'start': 22, 'end': 23}
{'entity': 1, 'score': 0.9999975, 'index': 25, 'word': '吲', 'start': 24, 'end': 25}
{'entity': 2, 'score': 0.9999957, 'index': 26, 'word': 'ε“š', 'start': 25, 'end': 26}
{'entity': 2, 'score': 0.9999945, 'index': 27, 'word': '美', 'start': 26, 'end': 27}
{'entity': 2, 'score': 0.9999933, 'index': 28, 'word': 'θΎ›', 'start': 27, 'end': 28}
{'entity': 2, 'score': 0.99949837, 'index': 29, 'word': '片', 'start': 28, 'end': 29}

Training and evaluation data

Framework versions

  • Transformers 4.15.0
  • Pytorch 1.10.1+cu113
  • Datasets 1.17.0
  • Tokenizers 0.10.3
Downloads last month
13
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.