|
--- |
|
base_model: Qwen/Qwen2.5-VL-7B-Instruct |
|
language: |
|
- en |
|
library_name: transformers |
|
pipeline_tag: image-text-to-text |
|
license: apache-2.0 |
|
tags: |
|
- multimodal |
|
- qwen |
|
- qwen2 |
|
- unsloth |
|
- transformers |
|
- vision |
|
--- |
|
<div> |
|
<p style="margin-bottom: 0;margin-top:0;"> |
|
<em>Unsloth's <a href="https://unsloth.ai/blog/dynamic-4bit">Dynamic 4-bit Quants</a> is selectively quantized, greatly improving accuracy over standard 4-bit.</em> |
|
</p> |
|
<div style="display: flex; gap: 5px; align-items: center;margin-top:0; "> |
|
<a href="https://github.com/unslothai/unsloth/"> |
|
<img src="https://github.com/unslothai/unsloth/raw/main/images/unsloth%20new%20logo.png" width="133"> |
|
</a> |
|
<a href="https://discord.gg/unsloth"> |
|
<img src="https://github.com/unslothai/unsloth/raw/main/images/Discord%20button.png" width="173"> |
|
</a> |
|
<a href="https://docs.unsloth.ai/"> |
|
<img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="143"> |
|
</a> |
|
</div> |
|
<h1 style="margin-top: 0rem;">Finetune LLMs 2-5x faster with 70% less memory via Unsloth</h2> |
|
</div> |
|
We have a free Google Colab Tesla T4 notebook for Qwen2-VL (7B) here: https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Qwen2_VL_(7B)-Vision.ipynb |
|
|
|
## ✨ Finetune for Free |
|
|
|
All notebooks are **beginner friendly**! Add your dataset, click "Run All", and you'll get a 2x faster finetuned model which can be exported to GGUF, vLLM or uploaded to Hugging Face. |
|
|
|
| Unsloth supports | Free Notebooks | Performance | Memory use | |
|
|-----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------| |
|
| **Llama-3.2 (3B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(1B_and_3B)-Conversational.ipynb) | 2.4x faster | 58% less | |
|
| **Llama-3.2 (11B vision)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(11B)-Vision.ipynb) | 2x faster | 60% less | |
|
| **Qwen2 VL (7B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Qwen2_VL_(7B)-Vision.ipynb) | 1.8x faster | 60% less | |
|
| **Qwen2.5 (7B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Qwen2.5_(7B)-Alpaca.ipynb) | 2x faster | 60% less | |
|
| **Llama-3.1 (8B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.1_(8B)-Alpaca.ipynb) | 2.4x faster | 58% less | |
|
| **Phi-3.5 (mini)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Phi_3.5_Mini-Conversational.ipynb) | 2x faster | 50% less | |
|
| **Gemma 2 (9B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Gemma2_(9B)-Alpaca.ipynb) | 2.4x faster | 58% less | |
|
| **Mistral (7B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Mistral_v0.3_(7B)-Conversational.ipynb) | 2.2x faster | 62% less | |
|
|
|
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="200"/>](https://docs.unsloth.ai) |
|
|
|
- This [Llama 3.2 conversational notebook](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(1B_and_3B)-Conversational.ipynb) is useful for ShareGPT ChatML / Vicuna templates. |
|
- This [text completion notebook](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Mistral_(7B)-Text_Completion.ipynb) is for raw text. This [DPO notebook](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) replicates Zephyr. |
|
- \* Kaggle has 2x T4s, but we use 1. Due to overhead, 1x T4 is 5x faster. |
|
|
|
# Qwen2.5-VL |
|
|
|
## Introduction |
|
|
|
In the past five months since Qwen2-VL's release, numerous developers have built new models on the Qwen2-VL vision-language models, providing us with valuable feedback. During this period, we focused on building more useful vision-language models. Today, we are excited to introduce the latest addition to the Qwen family: Qwen2.5-VL. |
|
|
|
#### Key Enhancements: |
|
* **Understand things visually**: Qwen2.5-VL is not only proficient in recognizing common objects such as flowers, birds, fish, and insects, but it is highly capable of analyzing texts, charts, icons, graphics, and layouts within images. |
|
|
|
* **Being agentic**: Qwen2.5-VL directly plays as a visual agent that can reason and dynamically direct tools, which is capable of computer use and phone use. |
|
|
|
* **Understanding long videos and capturing events**: Qwen2.5-VL can comprehend videos of over 1 hour, and this time it has a new ability of cpaturing event by pinpointing the relevant video segments. |
|
|
|
* **Capable of visual localization in different formats**: Qwen2.5-VL can accurately localize objects in an image by generating bounding boxes or points, and it can provide stable JSON outputs for coordinates and attributes. |
|
|
|
* **Generating structured outputs**: for data like scans of invoices, forms, tables, etc. Qwen2.5-VL supports structured outputs of their contents, benefiting usages in finance, commerce, etc. |
|
|
|
|
|
#### Model Architecture Updates: |
|
|
|
* **Dynamic Resolution and Frame Rate Training for Video Understanding**: |
|
|
|
We extend dynamic resolution to the temporal dimension by adopting dynamic FPS sampling, enabling the model to comprehend videos at various sampling rates. Accordingly, we update mRoPE in the time dimension with IDs and absolute time alignment, enabling the model to learn temporal sequence and speed, and ultimately acquire the ability to pinpoint specific moments. |
|
|
|
<p align="center"> |
|
<img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2.5-VL/qwen2.5vl_arc.jpeg" width="80%"/> |
|
<p> |
|
|
|
|
|
* **Streamlined and Efficient Vision Encoder** |
|
|
|
We enhance both training and inference speeds by strategically implementing window attention into the ViT. The ViT architecture is further optimized with SwiGLU and RMSNorm, aligning it with the structure of the Qwen2.5 LLM. |
|
|
|
|
|
We have three models with 3, 7 and 72 billion parameters. This repo contains the instruction-tuned 7B Qwen2.5-VL model. For more information, visit our [Blog](https://qwenlm.github.io/blog/qwen2.5-vl/) and [GitHub](https://github.com/QwenLM/Qwen2.5-VL). |
|
|
|
# Using Qwen2.5-VL 7B with 4-bit Quantization |
|
|
|
This guide demonstrates how to use the 4-bit quantized version of Qwen2.5-VL, a multimodal vision-language model that can understand images and generate descriptive text. The 4-bit quantization significantly reduces memory requirements while maintaining good performance. |
|
|
|
## Table of Contents |
|
- [Requirements](#requirements) |
|
- [Standard Implementation](#standard-implementation) |
|
- [Memory-Efficient Implementation](#memory-efficient-implementation) |
|
- [Quantization Benefits](#quantization-benefits) |
|
- [Performance Tips](#performance-tips) |
|
|
|
## Requirements |
|
|
|
```bash |
|
pip install transformers torch bitsandbytes accelerate pillow huggingface_hub |
|
pip install qwen-vl-utils[decord]==0.0.8 # For video support (recommended) |
|
# OR |
|
pip install qwen-vl-utils # Falls back to torchvision for video |
|
``` |
|
|
|
## Standard Implementation |
|
|
|
This implementation provides a good balance between performance and memory efficiency: |
|
|
|
```python |
|
import torch |
|
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration, BitsAndBytesConfig |
|
from huggingface_hub import login |
|
import requests |
|
from PIL import Image |
|
from io import BytesIO |
|
|
|
# Login to Hugging Face with token |
|
# You need to use a valid token with access to the model |
|
token = "YOUR_HF_TOKEN" # Replace with your valid token |
|
login(token) |
|
|
|
# Configure quantization |
|
bnb_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_compute_dtype=torch.float16, |
|
bnb_4bit_use_double_quant=True, |
|
bnb_4bit_quant_type="nf4" |
|
) |
|
|
|
# Model ID |
|
model_id = "ABDALLALSWAITI/Qwen2.5-VL-7B-Instruct-unsloth-bnb-4bit-copy" |
|
|
|
# Load processor |
|
processor = AutoProcessor.from_pretrained(model_id, token=token) |
|
|
|
# Load model |
|
model = Qwen2_5_VLForConditionalGeneration.from_pretrained( |
|
model_id, |
|
quantization_config=bnb_config, |
|
device_map="auto", |
|
token=token |
|
) |
|
|
|
# Process image from URL |
|
image_url = "https://i.pinimg.com/736x/69/cd/59/69cd59a5ee5e041aa00f088465befbad.jpg" |
|
response = requests.get(image_url) |
|
image = Image.open(BytesIO(response.content)).convert("RGB") |
|
|
|
# Create message according to Qwen2.5-VL format |
|
messages = [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{"type": "image", "image": image}, |
|
{"type": "text", "text": "Describe this image in detail."} |
|
] |
|
} |
|
] |
|
|
|
# Process input |
|
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
inputs = processor(text=[text], images=[image], return_tensors="pt").to("cuda") |
|
|
|
# Generate response |
|
with torch.no_grad(): |
|
output_ids = model.generate(**inputs, max_new_tokens=200) |
|
|
|
# Decode response |
|
response = processor.batch_decode( |
|
output_ids[:, inputs.input_ids.shape[1]:], |
|
skip_special_tokens=True |
|
)[0] |
|
|
|
print(response) |
|
``` |
|
|
|
## Memory-Efficient Implementation |
|
|
|
This version includes optimizations for systems with limited resources, with better error handling and memory management: |
|
|
|
```python |
|
import torch |
|
import transformers |
|
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration, BitsAndBytesConfig |
|
from huggingface_hub import login |
|
import requests |
|
from PIL import Image |
|
from io import BytesIO |
|
import gc |
|
import os |
|
|
|
# Login to Hugging Face with token |
|
token = "YOUR_HF_TOKEN" # Replace with your valid token |
|
login(token) |
|
|
|
# Set environment variables to optimize memory usage |
|
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128" |
|
|
|
def process_vision_info(messages): |
|
"""Process images and videos from messages""" |
|
image_inputs = [] |
|
video_inputs = None |
|
|
|
for message in messages: |
|
if message["role"] == "user" and isinstance(message["content"], list): |
|
for content in message["content"]: |
|
if content["type"] == "image": |
|
# Handle image from URL |
|
if isinstance(content["image"], str) and content["image"].startswith("http"): |
|
try: |
|
response = requests.get(content["image"], timeout=10) |
|
response.raise_for_status() |
|
image = Image.open(BytesIO(response.content)).convert("RGB") |
|
image_inputs.append(image) |
|
except (requests.RequestException, IOError) as e: |
|
print(f"Error loading image from URL: {e}") |
|
# Handle base64 images |
|
elif isinstance(content["image"], str) and content["image"].startswith("data:image"): |
|
try: |
|
import base64 |
|
# Extract base64 data after the comma |
|
base64_data = content["image"].split(',')[1] |
|
image_data = base64.b64decode(base64_data) |
|
image = Image.open(BytesIO(image_data)).convert("RGB") |
|
image_inputs.append(image) |
|
except Exception as e: |
|
print(f"Error loading base64 image: {e}") |
|
# Handle local file paths |
|
elif isinstance(content["image"], str) and content["image"].startswith("file://"): |
|
try: |
|
file_path = content["image"][7:] # Remove 'file://' |
|
image = Image.open(file_path).convert("RGB") |
|
image_inputs.append(image) |
|
except Exception as e: |
|
print(f"Error loading local image: {e}") |
|
else: |
|
print("Unsupported image format or source") |
|
|
|
return image_inputs, video_inputs |
|
|
|
# Print versions for debugging |
|
print(f"Transformers version: {transformers.__version__}") |
|
print(f"PyTorch version: {torch.__version__}") |
|
print(f"CUDA available: {torch.cuda.is_available()}") |
|
if torch.cuda.is_available(): |
|
print(f"CUDA device: {torch.cuda.get_device_name(0)}") |
|
print(f"CUDA memory allocated: {torch.cuda.memory_allocated(0)/1024**3:.2f} GB") |
|
print(f"CUDA memory reserved: {torch.cuda.memory_reserved(0)/1024**3:.2f} GB") |
|
|
|
# Load the 4-bit quantized model from Unsloth |
|
model_id = "ABDALLALSWAITI/Qwen2.5-VL-7B-Instruct-unsloth-bnb-4bit-copy" |
|
try: |
|
# Free GPU memory before loading |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
gc.collect() |
|
|
|
# Load the processor first (less memory intensive) |
|
print("Loading processor...") |
|
processor = AutoProcessor.from_pretrained(model_id, token=token) |
|
|
|
# Configure quantization parameters |
|
quantization_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_compute_dtype=torch.float16, |
|
bnb_4bit_use_double_quant=True, |
|
bnb_4bit_quant_type="nf4", |
|
llm_int8_enable_fp32_cpu_offload=True |
|
) |
|
|
|
print("Loading model...") |
|
# Try loading with GPU offloading enabled |
|
try: |
|
model = Qwen2_5_VLForConditionalGeneration.from_pretrained( |
|
model_id, |
|
token=token, |
|
device_map="auto", |
|
quantization_config=quantization_config, |
|
low_cpu_mem_usage=True, |
|
) |
|
print("Model loaded successfully with GPU acceleration") |
|
except (ValueError, RuntimeError, torch.cuda.OutOfMemoryError) as e: |
|
print(f"GPU loading failed: {e}") |
|
print("Falling back to CPU-only mode") |
|
|
|
# Clean up any partially loaded model |
|
if 'model' in locals(): |
|
del model |
|
torch.cuda.empty_cache() |
|
gc.collect() |
|
|
|
# Try again with CPU only |
|
model = Qwen2_5_VLForConditionalGeneration.from_pretrained( |
|
model_id, |
|
token=token, |
|
device_map="cpu", |
|
torch_dtype=torch.float32, |
|
) |
|
print("Model loaded on CPU successfully") |
|
|
|
# Print model's device map if available |
|
if hasattr(model, 'hf_device_map'): |
|
print("Model device map:") |
|
for module, device in model.hf_device_map.items(): |
|
print(f" {module}: {device}") |
|
|
|
# Example message with an image |
|
messages = [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{ |
|
"type": "image", |
|
"image": "https://i.pinimg.com/736x/69/cd/59/69cd59a5ee5e041aa00f088465befbad.jpg", |
|
}, |
|
{"type": "text", "text": "Describe this image in detail."}, |
|
], |
|
} |
|
] |
|
|
|
# Process the messages |
|
print("Processing input...") |
|
text = processor.apply_chat_template( |
|
messages, tokenize=False, add_generation_prompt=True |
|
) |
|
image_inputs, video_inputs = process_vision_info(messages) |
|
|
|
# Check if we have valid image inputs |
|
if not image_inputs: |
|
raise ValueError("No valid images were processed") |
|
|
|
# Prepare inputs for the model |
|
inputs = processor( |
|
text=[text], |
|
images=image_inputs, |
|
videos=video_inputs, |
|
padding=True, |
|
return_tensors="pt", |
|
) |
|
|
|
# Determine which device to use based on model's main device |
|
if hasattr(model, 'hf_device_map'): |
|
# Find the primary device (usually where the first transformer block is) |
|
for key, device in model.hf_device_map.items(): |
|
if 'transformer.blocks.0' in key or 'model.embed_tokens' in key: |
|
input_device = device |
|
break |
|
else: |
|
# Default to first device in the map |
|
input_device = next(iter(model.hf_device_map.values())) |
|
else: |
|
# If not distributed, use the model's device |
|
input_device = next(model.parameters()).device |
|
|
|
print(f"Using device {input_device} for inputs") |
|
inputs = {k: v.to(input_device) for k, v in inputs.items()} |
|
|
|
# Generate the response |
|
print("Generating response...") |
|
with torch.no_grad(): |
|
generation_config = { |
|
"max_new_tokens": 256, |
|
"do_sample": True, |
|
"temperature": 0.7, |
|
"top_p": 0.9, |
|
} |
|
generated_ids = model.generate(**inputs, **generation_config) |
|
|
|
# Process the output |
|
generated_ids_trimmed = [ |
|
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs["input_ids"], generated_ids) |
|
] |
|
output_text = processor.batch_decode( |
|
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False |
|
) |
|
|
|
# Print the response |
|
print("\nModel response:") |
|
print(output_text[0]) |
|
except Exception as e: |
|
import traceback |
|
print(f"An error occurred: {e}") |
|
print(traceback.format_exc()) |
|
finally: |
|
# Clean up |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
``` |
|
|
|
## Quantization Benefits |
|
|
|
The 4-bit quantized model offers several advantages: |
|
|
|
1. **Reduced Memory Usage**: Uses approximately 4-5GB of VRAM compared to 14-16GB for the full model |
|
2. **Wider Accessibility**: Can run on consumer GPUs with limited VRAM (e.g., RTX 3060, GTX 1660) |
|
3. **CPU Fallback**: The memory-efficient implementation can fall back to CPU if GPU memory is insufficient |
|
4. **Minimal Performance Loss**: The quantized model maintains most of the reasoning capabilities of the full model |
|
|
|
## Performance Tips |
|
|
|
1. **Control Image Resolution**: |
|
```python |
|
processor = AutoProcessor.from_pretrained( |
|
model_id, |
|
token=token, |
|
min_pixels=256*28*28, # Lower bound |
|
max_pixels=1280*28*28 # Upper bound |
|
) |
|
``` |
|
|
|
2. **Enable Flash Attention 2** for better performance (if supported): |
|
```python |
|
model = Qwen2_5_VLForConditionalGeneration.from_pretrained( |
|
model_id, |
|
token=token, |
|
torch_dtype=torch.bfloat16, |
|
attn_implementation="flash_attention_2", |
|
device_map="auto", |
|
quantization_config=bnb_config |
|
) |
|
``` |
|
|
|
3. **Memory Management**: |
|
- Call `torch.cuda.empty_cache()` and `gc.collect()` before and after using the model |
|
- Set environment variables: `os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128"` |
|
- Use `low_cpu_mem_usage=True` when loading the model |
|
|
|
4. **Generation Parameters**: |
|
- Adjust `max_new_tokens` based on your needs (lower values use less memory) |
|
- Use temperature and top_p to control randomness: |
|
```python |
|
generation_config = { |
|
"max_new_tokens": 256, |
|
"do_sample": True, |
|
"temperature": 0.7, |
|
"top_p": 0.9, |
|
} |
|
``` |
|
|
|
5. **Multi-Image Processing**: |
|
When working with multiple images, batch processing them properly can save memory and improve efficiency: |
|
```python |
|
messages = [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{"type": "image", "image": "url_to_image1"}, |
|
{"type": "image", "image": "url_to_image2"}, |
|
{"type": "text", "text": "Compare these two images."} |
|
] |
|
} |
|
] |
|
``` |