experiments

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6596

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
1.7073 0.4162 50 1.5993
1.4004 0.8325 100 1.4527
1.3051 1.2487 150 1.4122
1.2396 1.6649 200 1.3871
1.2044 2.0812 250 1.3906
1.1019 2.4974 300 1.3775
1.2682 2.9136 350 1.3649
1.1681 3.3299 400 1.4233
1.1343 3.7461 450 1.4160
0.7987 4.1623 500 1.4964
0.8663 4.5786 550 1.5011
0.7473 4.9948 600 1.4845
0.7386 5.4110 650 1.5706
0.61 5.8273 700 1.5695
0.4689 6.2435 750 1.6596

Framework versions

  • PEFT 0.11.1
  • Transformers 4.41.2
  • Pytorch 1.13.1+cu117
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
3
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for AI-4-Health/HPP-finetuned-Meta-Llama-3-8B-Instruct

Adapter
(666)
this model