Add helper functions
#3
by
nielsr
HF Staff
- opened
README.md
CHANGED
|
@@ -52,13 +52,94 @@ Codebase and datasets can be found at https://github.com/AI4Chem/ChemVlm.
|
|
| 52 |
## Quick Start
|
| 53 |
|
| 54 |
```python
|
| 55 |
-
from transformers import AutoTokenizer,
|
| 56 |
import torch
|
| 57 |
import torchvision.transforms as T
|
|
|
|
| 58 |
from torchvision.transforms.functional import InterpolationMode
|
| 59 |
-
from PIL import Image
|
| 60 |
|
| 61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
tokenizer = AutoTokenizer.from_pretrained('AI4Chem/ChemVLM-8B', trust_remote_code=True)
|
| 64 |
model = AutoModelForCausalLM.from_pretrained(
|
|
|
|
| 52 |
## Quick Start
|
| 53 |
|
| 54 |
```python
|
| 55 |
+
from transformers import AutoTokenizer, AutoModelforCasualLM
|
| 56 |
import torch
|
| 57 |
import torchvision.transforms as T
|
| 58 |
+
import transformers
|
| 59 |
from torchvision.transforms.functional import InterpolationMode
|
|
|
|
| 60 |
|
| 61 |
+
|
| 62 |
+
IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
| 63 |
+
IMAGENET_STD = (0.229, 0.224, 0.225)
|
| 64 |
+
|
| 65 |
+
IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
| 66 |
+
IMAGENET_STD = (0.229, 0.224, 0.225)
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
def build_transform(input_size):
|
| 70 |
+
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
|
| 71 |
+
transform = T.Compose([
|
| 72 |
+
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
|
| 73 |
+
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
|
| 74 |
+
T.ToTensor(),
|
| 75 |
+
T.Normalize(mean=MEAN, std=STD)
|
| 76 |
+
])
|
| 77 |
+
return transform
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
|
| 81 |
+
best_ratio_diff = float('inf')
|
| 82 |
+
best_ratio = (1, 1)
|
| 83 |
+
area = width * height
|
| 84 |
+
for ratio in target_ratios:
|
| 85 |
+
target_aspect_ratio = ratio[0] / ratio[1]
|
| 86 |
+
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
|
| 87 |
+
if ratio_diff < best_ratio_diff:
|
| 88 |
+
best_ratio_diff = ratio_diff
|
| 89 |
+
best_ratio = ratio
|
| 90 |
+
elif ratio_diff == best_ratio_diff:
|
| 91 |
+
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
|
| 92 |
+
best_ratio = ratio
|
| 93 |
+
return best_ratio
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False):
|
| 97 |
+
orig_width, orig_height = image.size
|
| 98 |
+
aspect_ratio = orig_width / orig_height
|
| 99 |
+
|
| 100 |
+
# calculate the existing image aspect ratio
|
| 101 |
+
target_ratios = set(
|
| 102 |
+
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
|
| 103 |
+
i * j <= max_num and i * j >= min_num)
|
| 104 |
+
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
|
| 105 |
+
|
| 106 |
+
# find the closest aspect ratio to the target
|
| 107 |
+
target_aspect_ratio = find_closest_aspect_ratio(
|
| 108 |
+
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
|
| 109 |
+
|
| 110 |
+
# calculate the target width and height
|
| 111 |
+
target_width = image_size * target_aspect_ratio[0]
|
| 112 |
+
target_height = image_size * target_aspect_ratio[1]
|
| 113 |
+
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
|
| 114 |
+
|
| 115 |
+
# resize the image
|
| 116 |
+
resized_img = image.resize((target_width, target_height))
|
| 117 |
+
processed_images = []
|
| 118 |
+
for i in range(blocks):
|
| 119 |
+
box = (
|
| 120 |
+
(i % (target_width // image_size)) * image_size,
|
| 121 |
+
(i // (target_width // image_size)) * image_size,
|
| 122 |
+
((i % (target_width // image_size)) + 1) * image_size,
|
| 123 |
+
((i // (target_width // image_size)) + 1) * image_size
|
| 124 |
+
)
|
| 125 |
+
# split the image
|
| 126 |
+
split_img = resized_img.crop(box)
|
| 127 |
+
processed_images.append(split_img)
|
| 128 |
+
assert len(processed_images) == blocks
|
| 129 |
+
if use_thumbnail and len(processed_images) != 1:
|
| 130 |
+
thumbnail_img = image.resize((image_size, image_size))
|
| 131 |
+
processed_images.append(thumbnail_img)
|
| 132 |
+
return processed_images
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
def load_image(image_file, input_size=448, max_num=6):
|
| 136 |
+
image = Image.open(image_file).convert('RGB')
|
| 137 |
+
transform = build_transform(input_size=input_size)
|
| 138 |
+
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
|
| 139 |
+
pixel_values = [transform(image) for image in images]
|
| 140 |
+
pixel_values = torch.stack(pixel_values)
|
| 141 |
+
return pixel_values
|
| 142 |
+
|
| 143 |
|
| 144 |
tokenizer = AutoTokenizer.from_pretrained('AI4Chem/ChemVLM-8B', trust_remote_code=True)
|
| 145 |
model = AutoModelForCausalLM.from_pretrained(
|