MARTINI_enrich_BERTopic_taylorhudak

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("AIDA-UPM/MARTINI_enrich_BERTopic_taylorhudak")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 8
  • Number of training documents: 564
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
-1 vaccine - pandemic - deaths - lies - 2021 29 -1_vaccine_pandemic_deaths_lies
0 wikileaks - extradited - julian - supreme - belmarsh 168 0_wikileaks_extradited_julian_supreme
1 fauci - symposium - orsolya - catherine - cardiologist 106 1_fauci_symposium_orsolya_catherine
2 vaccine - modrna - myocarditis - autopsies - autoimmune 67 2_vaccine_modrna_myocarditis_autopsies
3 amtsgericht - bhakdi - conviction - holocaust - vaccination 56 3_amtsgericht_bhakdi_conviction_holocaust
4 fed - monetary - coup - ecb - catherine 51 4_fed_monetary_coup_ecb
5 mariupol - lugansk - zelensky - vladimir - propaganda 49 5_mariupol_lugansk_zelensky_vladimir
6 eu - disinformation - censor - regulatory - headlines 38 6_eu_disinformation_censor_regulatory

Training hyperparameters

  • calculate_probabilities: True
  • language: None
  • low_memory: False
  • min_topic_size: 10
  • n_gram_range: (1, 1)
  • nr_topics: None
  • seed_topic_list: None
  • top_n_words: 10
  • verbose: False
  • zeroshot_min_similarity: 0.7
  • zeroshot_topic_list: None

Framework versions

  • Numpy: 1.26.4
  • HDBSCAN: 0.8.40
  • UMAP: 0.5.7
  • Pandas: 2.2.3
  • Scikit-Learn: 1.5.2
  • Sentence-transformers: 3.3.1
  • Transformers: 4.46.3
  • Numba: 0.60.0
  • Plotly: 5.24.1
  • Python: 3.10.12
Downloads last month
1
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support