Understanding writing style in social media with a supervised contrastively pre-trained transformer
Paper
•
2310.11081
•
Published
This is the repository for the Style Transformer for Authorship Representations (STAR) model. We present the weights of our model here.
Also check out our github repo for STAR for replication.
tokenizer = AutoTokenizer.from_pretrained('roberta-large')
model = AutoModel.from_pretrained('AIDA-UPM/star')
examples = ['My text 1', 'This is another text']
def extract_embeddings(texts):
encoded_texts = tokenizer(texts)
with torch.no_grad():
style_embeddings = model(encoded_texts.input_ids,
attention_mask=encoded_texts.attention_mask).pooler_output
return style_embeddings
print(extract_embeddings(examples))
@article{Huertas-Tato2023Oct,
author = {Huertas-Tato, Javier and Martin, Alejandro and Camacho, David},
title = {{Understanding writing style in social media with a supervised contrastively pre-trained transformer}},
journal = {arXiv},
year = {2023},
month = oct,
eprint = {2310.11081},
doi = {10.48550/arXiv.2310.11081}
}