Overview

BTE-Base-Ar is a leading open-source model based on the Transformer architecture, sIt maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. With only 149 million parameters, it offers a perfect balance between performance and efficiency, outperforming larger models while using significantly fewer resources.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity
  • Language: ar
  • License: mit

Key Features

  • Lightweight & Efficient: 149M parameters vs competitors with 278-568M parameters
  • Long Text Processing: Handles up to 8192 tokens with sliding window technique
  • High-Speed Inference: 3x faster than comparable models
  • Arabic Language Optimization: Specifically fine-tuned for Arabic language nuances
  • Resource Efficient: 75% less memory consumption than competitors

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Training Methodology

BTE-Base-Ar was trained on a diverse corpus of 741,159,981 tokens from:

  • Authentic Arabic and English open-source datasets
  • Manually crafted and processed text
  • Purpose-generated synthetic data

This comprehensive training approach enables deep understanding of both Arabic & English linguistic contexts.

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("ALJIACHI/bte-base-ar")
# Run inference
sentences = [
    'وبيّن: بمقتضى عقيدتنا قُل لَّن يُصِيبَنَا إِلَّا مَا كَتَبَ اللَّهُ لَنَا ، أي أنّ الإنسان المؤمن دائماً يكون في حالة طمأنينة، وهذه العلاقة ما بين العبد وربّه هي علاقة عبدٍ مع سيّده، وكما ورد في بعض الأدعية خيرُك إلينا نازل وشرُّنا إليك صاعد ، نحن نتعامل مع الله سبحانه وتعالى وهو محضُ الخير ومحضُ الرحمة، وكلّ ما يصدر من الله تبارك وتعالى على العبد أن يكون في منتهى العبوديّة والتذلّل اليه جلّ شأنُه .',
    'أعلنت وزارة الصحة عن حملة تطعيم وطنية ضد الأمراض المعدية، تهدف إلى حماية الأطفال من العدوى.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.8598
spearman_cosine 0.8538

Framework Versions

  • Python: 3.10.14
  • Sentence Transformers: 4.0.1
  • Transformers: 4.50.3
  • PyTorch: 2.3.0+cu121
  • Accelerate: 1.5.2
  • Datasets: 3.5.0
  • Tokenizers: 0.21.0

Citation

If you use BTE-Base-Ar in your research, please cite:

@software{BTE_Base_Ar_2025,
  author = {Ali Aljiachi},
  title = {BTE-Base-Ar: A Revolutionary Arabic Text Embeddings Model},
  year = {2025},
  publisher = {Hugging Face},
  url = {https://huggingface.co/Aljiachi/bte-base-ar}
}
@misc{modernbert,
      title={Smarter, Better, Faster, Longer: A Modern Bidirectional Encoder for Fast, Memory Efficient, and Long Context Finetuning and Inference}, 
      author={Benjamin Warner and Antoine Chaffin and Benjamin Clavié and Orion Weller and Oskar Hallström and Said Taghadouini and Alexis Gallagher and Raja Biswas and Faisal Ladhak and Tom Aarsen and Nathan Cooper and Griffin Adams and Jeremy Howard and Iacopo Poli},
      year={2024},
      eprint={2412.13663},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2412.13663}, 
}
Downloads last month
27
Safetensors
Model size
149M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Evaluation results