Multimodal Models
Collection
11 items
•
Updated
This version of InternVL2_5-1B-MPO has been converted to run on the Axera NPU using w8a16 quantization.
This model has been optimized with the following LoRA:
Compatible with Pulsar2 version: 4.1
For those who are interested in model conversion, you can try to export axmodel through the original repo : https://huggingface.co/OpenGVLab/InternVL2_5-1B-MPO
How to Convert LLM from Huggingface to axmodel
Chips | image encoder 448 | ttft | w8a16 |
---|---|---|---|
AX650 | 350 ms | 420 ms | 32 tokens/sec |
Chips | image encoder 364 | ttft | w8a16 |
---|---|---|---|
AX630C | 1769 ms | 1123 ms | 2.4 tokens/sec |
Download all files from this repository to the device
root@ax650:/mnt/qtang/llm-test/internvl2_5-1b-mpo# tree -L 1
.
|-- README.md
|-- config.json
|-- image1.jpg
|-- internvl2_5_1b_364_ax630c
|-- internvl2_5_1b_448_ax650
|-- internvl2_5_tokenizer
|-- internvl2_5_tokenizer_364.py
|-- internvl2_5_tokenizer_448.py
|-- main
|-- main_ax650
|-- post_config.json
|-- run_internvl2_5_364_ax630c.sh
`-- run_internvl2_5_448_ax650.sh
3 directories, 10 files
pip install transformers==4.41.1
root@ax650:/mnt/qtang/llm-test/internvl2_5-1b-mpo# python3 internvl2_5_tokenizer_448.py
None None 151645 <|im_end|> 151665 151667
context_len is 256
prompt is <|im_start|>system
你是书生·万象, 英文名是InternVL, 是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型.<|im_end|>
.......
http://0.0.0.0:12345
Describe the picture
Open another terminal and run ./run_internvl2_5_448_ax650.sh
root@ax650:/mnt/qtang/llm-test/internvl2_5-1b-mpo# ./run_internvl2_5_448_ax650.sh
[I][ Init][ 134]: LLM init start
[I][ Init][ 34]: connect http://0.0.0.0:12345 ok
bos_id: -1, eos_id: 151645
img_start_token: 151665
img_context_token: 151667
3% | ██ | 1 / 27 [0.01s<0.30s, 90.91 count/s] tokenizer init ok
[I][ Init][ 45]: LLaMaEmbedSelector use mmap
7% | ███ | 2 / 27 [0.01s<0.19s, 142.86 count/s] embed_selector init ok
100% | ████████████████████████████████ | 27 / 27 [4.31s<4.31s, 6.26 count/s] init post axmodel ok,remain_cmm(3881 MB)
[I][ Init][ 226]: IMAGE_CONTEXT_TOKEN: 151667, IMAGE_START_TOKEN: 151665
[I][ Init][ 251]: image encoder input nchw@float32
[I][ Init][ 281]: image encoder output float32
[I][ Init][ 291]: image_encoder_height : 448, image_encoder_width: 448
[I][ Init][ 293]: max_token_len : 2559
[I][ Init][ 296]: kv_cache_size : 128, kv_cache_num: 2559
[I][ Init][ 304]: prefill_token_num : 128
[I][ Init][ 308]: grp: 1, prefill_max_token_num : 1
[I][ Init][ 308]: grp: 2, prefill_max_token_num : 128
[I][ Init][ 308]: grp: 3, prefill_max_token_num : 256
[I][ Init][ 308]: grp: 4, prefill_max_token_num : 384
[I][ Init][ 308]: grp: 5, prefill_max_token_num : 512
[I][ Init][ 308]: grp: 6, prefill_max_token_num : 640
[I][ Init][ 308]: grp: 7, prefill_max_token_num : 768
[I][ Init][ 308]: grp: 8, prefill_max_token_num : 896
[I][ Init][ 308]: grp: 9, prefill_max_token_num : 1024
[I][ Init][ 312]: prefill_max_token_num : 1024
[I][ load_config][ 282]: load config:
{
"enable_repetition_penalty": false,
"enable_temperature": true,
"enable_top_k_sampling": true,
"enable_top_p_sampling": false,
"penalty_window": 20,
"repetition_penalty": 1.2,
"temperature": 0.9,
"top_k": 10,
"top_p": 0.8
}
[I][ Init][ 321]: LLM init ok
Type "q" to exit, Ctrl+c to stop current running
prompt >> Describe the picture
image >> image1.jpg
[I][ Encode][ 415]: image encode time : 395.42 ms, size : 229376
[I][ Encode][ 524]: idx:0 offset : 48 out_embed.size() : 277760
[I][ Run][ 551]: input token num : 310, prefill_split_num : 3
[I][ Run][ 566]: prefill grpid 4
[I][ Run][ 593]: input_num_token:128
[I][ Run][ 593]: input_num_token:128
[I][ Run][ 593]: input_num_token:54
[I][ Run][ 717]: ttft: 625.86 ms
: The image features a red panda sitting in a tree with a blurred green background indicating foliage.
The red panda has a distinctive reddish-brown head and back, white underparts, and black patches around its eyes,
nose, and mouth. It appears to be resting or lounging comfortably on a wooden platform.
[N][ Run][ 826]: hit eos,avg 27.37 token/s
prompt >> q
Base model
OpenGVLab/InternVL2_5-1B