qqc1989's picture
Update README.md
33418f9 verified
---
license: mit
language:
- zh
- en
base_model:
- Qwen/Qwen2.5-1.5B-Instruct-GPTQ-INT8
- Qwen/Qwen2.5-1.5B-Instruct-GPTQ-INT4
pipeline_tag: text-generation
library_name: transformers
tags:
- Context
- Qwen2.5-1.5B-Instruct-GPTQ-INT8
- Qwen2.5-1.5B-Instruct-GPTQ-INT4
---
# Qwen2.5-1.5B-Instruct
This version of Qwen2.5-1.5B-Instruct has been converted to run on the Axera NPU using **w8a16** and **w4a16** quantization.
This model has been optimized with the following LoRA:
Compatible with Pulsar2 version: 4.1
## Feature
- Support for longer contexts, in this sample it's 2.5k
- Support context dialogue
- System prompt kvcache is supported
## Convert tools links:
For those who are interested in model conversion, you can try to export axmodel through the original repo : https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct-GPTQ-Int8
[Pulsar2 Link, How to Convert LLM from Huggingface to axmodel](https://pulsar2-docs.readthedocs.io/en/latest/appendix/build_llm.html)
[AXera NPU AXEngine LLM Runtime](https://github.com/AXERA-TECH/ax-llm/tree/ax-context)
[AXera NPU AXCL LLM Runtime](https://github.com/AXERA-TECH/ax-llm/tree/axcl-context)
### Convert script
The follow show how to convert Qwen2.5-1.5B-Instruct-GPTQ-Int8
```
pulsar2 llm_build --input_path Qwen/Qwen2.5-1.5B-Instruct-GPTQ-Int8 \
--output_path Qwen/Qwen2.5-1.5B-Instruct-GPTQ-Int8-ctx-ax650 \
--hidden_state_type bf16 --kv_cache_len 2047 --prefill_len 128 \
--last_kv_cache_len 128 \
--last_kv_cache_len 256 \
--last_kv_cache_len 384 \
--last_kv_cache_len 512 \
--last_kv_cache_len 640 \
--last_kv_cache_len 768 \
--last_kv_cache_len 896 \
--last_kv_cache_len 1024 \
--chip AX650 -c 1 --parallel 8
```
## Support Platform
- AX650
- AX650N DEMO Board
- [M4N-Dock(็ˆฑ่ŠฏๆดพPro)](https://wiki.sipeed.com/hardware/zh/maixIV/m4ndock/m4ndock.html)
- [M.2 Accelerator card](https://axcl-docs.readthedocs.io/zh-cn/latest/doc_guide_hardware.html)
- AX630C
- *TBD*
|Chips|w8a16|w4a16| DDR | Flash |
|--|--|--|--|--|
|AX650| 12 tokens/sec| 17 tokens/sec | 2.3GB | 2.3GB |
## How to use
Download all files from this repository to the device
```
root@ax650:/mnt/qtang/llm-test/Qwen2.5-1.5B-Instruct# tree -L 1
.
โ”œโ”€โ”€ main_api
โ”œโ”€โ”€ main_ax650
โ”œโ”€โ”€ main_axcl_aarch64
โ”œโ”€โ”€ main_axcl_x86
โ”œโ”€โ”€ post_config.json
โ”œโ”€โ”€ qwen2.5-1.5b-ctx-ax650
โ”œโ”€โ”€ qwen2.5-1.5b-ctx-int4-ax650
โ”œโ”€โ”€ qwen2.5_tokenizer
โ”œโ”€โ”€ qwen2.5_tokenizer_uid.py
โ”œโ”€โ”€ run_qwen2.5_1.5b_ctx_ax650_api.sh
โ”œโ”€โ”€ run_qwen2.5_1.5b_ctx_ax650.sh
โ”œโ”€โ”€ run_qwen2.5_1.5b_ctx_axcl_aarch64.sh
โ”œโ”€โ”€ run_qwen2.5_1.5b_ctx_axcl_x86.sh
โ””โ”€โ”€ run_qwen2.5_1.5b_ctx_int4_ax650.sh
```
#### Start the Tokenizer service
```
root@ax650:/mnt/qtang/llm-test/Qwen2.5-1.5B-Instruct# python qwen2.5_tokenizer_uid.py
Server running at http://0.0.0.0:12345
```
#### System prompt cache
- The System prompt can be preset through the configuration file from `--system_prompt`
- The System prompt can be cached in the form of kv cache to a specified folder for quick loading at the next run time from `--kvcache_path`
- This folder needs to be created manually before running, for example `mkdir kvcache`
```
root@ax650:/mnt/qtang/llm-test/qwen2.5-1.5b-ctx# cat run_qwen2.5_1.5b_ctx_ax650.sh
./main_ax650 \
--template_filename_axmodel "qwen2.5-1.5b-ctx-ax650/qwen2_p128_l%d_together.axmodel" \
--axmodel_num 28 \
--tokenizer_type 2 \
--url_tokenizer_model "http://0.0.0.0:12345" \
--filename_post_axmodel "qwen2.5-1.5b-ctx-ax650/qwen2_post.axmodel" \
--filename_tokens_embed "qwen2.5-1.5b-ctx-ax650/model.embed_tokens.weight.bfloat16.bin" \
--tokens_embed_num 151936 \
--tokens_embed_size 1536 \
--use_mmap_load_embed 1 \
--live_print 1
#--system_prompt "ไฝ ็š„ๅๅญ—ๅซๅฐๆ™บ๏ผˆallen๏ผ‰,ไฝ ๆ˜ฏไธ€ไธชไบบ็•œๆ— ๅฎณ็š„AIๅŠฉๆ‰‹ใ€‚ๆทฑๅœณๅธ‚ไปŠๅคฉ๏ผˆ4ๆœˆ1ๆ—ฅ๏ผ‰้˜ดๅคฉ๏ผŒๆ„šไบบ่Š‚๏ผŒๆฐ”ๆธฉๅœจ14ยฐC่‡ณ19ยฐCไน‹้—ด๏ผŒๅพฎ้ฃŽใ€‚" \
#--kvcache_path "./kvcache" \
```
#### Inference with AX650 Host, such as M4N-Dock(็ˆฑ่ŠฏๆดพPro) or AX650N DEMO Board
Open another terminal and run `run_qwen2.5_1.5b_ctx_ax650.sh`
```
root@ax650:/mnt/qtang/llm-test/qwen2.5-1.5b-ctx# ./run_qwen2.5_1.5b_ctx_ax650.sh
[I][ Init][ 110]: LLM init start
[I][ Init][ 34]: connect http://0.0.0.0:12345 ok
[I][ Init][ 57]: uid: 1d0fadb4-1aa1-44d2-9587-e27badcd2ebf
bos_id: -1, eos_id: 151645
3% | โ–ˆโ–ˆ | 1 / 31 [4.80s<148.95s, 0.21 count/s] tokenizer init ok
[I][ Init][ 26]: LLaMaEmbedSelector use mmap
100% | โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ | 31 / 31 [24.90s<24.90s, 1.24 count/s] init post axmodel ok,remain_cmm(7477 MB)
[I][ Init][ 188]: max_token_len : 2047
[I][ Init][ 193]: kv_cache_size : 256, kv_cache_num: 2047
[I][ Init][ 201]: prefill_token_num : 128
[I][ Init][ 205]: grp: 1, prefill_max_token_num : 1
[I][ Init][ 205]: grp: 2, prefill_max_token_num : 128
[I][ Init][ 205]: grp: 3, prefill_max_token_num : 256
[I][ Init][ 205]: grp: 4, prefill_max_token_num : 384
[I][ Init][ 205]: grp: 5, prefill_max_token_num : 512
[I][ Init][ 205]: grp: 6, prefill_max_token_num : 640
[I][ Init][ 205]: grp: 7, prefill_max_token_num : 768
[I][ Init][ 205]: grp: 8, prefill_max_token_num : 896
[I][ Init][ 205]: grp: 9, prefill_max_token_num : 1024
[I][ Init][ 209]: prefill_max_token_num : 1024
[I][ load_config][ 282]: load config:
{
"enable_repetition_penalty": false,
"enable_temperature": false,
"enable_top_k_sampling": false,
"enable_top_p_sampling": false,
"penalty_window": 20,
"repetition_penalty": 1.2,
"temperature": 0.9,
"top_k": 10,
"top_p": 0.8
}
[I][ Init][ 218]: LLM init ok
Type "q" to exit, Ctrl+c to stop current running
[I][ GenerateKVCachePrefill][ 271]: input token num : 21, prefill_split_num : 1 prefill_grpid : 2
[I][ GenerateKVCachePrefill][ 308]: input_num_token:21
[I][ main][ 230]: precompute_len: 21
[I][ main][ 231]: system_prompt:
prompt >> who are you?
[I][ SetKVCache][ 531]: prefill_grpid:2 kv_cache_num:128 precompute_len:21 input_num_token:12
[I][ SetKVCache][ 534]: current prefill_max_token_num:896
[I][ Run][ 660]: input token num : 12, prefill_split_num : 1
[I][ Run][ 686]: input_num_token:12
[I][ Run][ 829]: ttft: 306.20 ms
I am Qwen, a large language model created by Alibaba Cloud. I am here to assist you with your questions and provide helpful information. How may I assist you today?
[N][ Run][ 943]: hit eos,avg 12.20 token/s
[I][ GetKVCache][ 500]: precompute_len:68, remaining:956
prompt >> q
root@ax650:/mnt/qtang/llm-test/qwen2.5-1.5b-ctx#
```