File size: 7,505 Bytes
3232548 de35c61 3232548 de35c61 3232548 de35c61 3232548 e9b9cee 3232548 e9b9cee 3232548 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
from typing import List, Union
import numpy as np
# import onnxruntime
import axengine
import torch
from PIL import Image
from transformers import CLIPTokenizer, CLIPTextModel, PreTrainedTokenizer, CLIPTextModelWithProjection
import os
import time
import argparse
def get_args():
parser = argparse.ArgumentParser(
prog="StableDiffusion",
description="Generate picture with the input prompt"
)
parser.add_argument("--prompt", type=str, required=False, default="Self-portrait oil painting, a beautiful cyborg with golden hair, 8k", help="the input text prompt")
parser.add_argument("--text_model_dir", type=str, required=False, default="./models/", help="Path to text encoder and tokenizer files")
parser.add_argument("--unet_model", type=str, required=False, default="./models/unet.axmodel", help="Path to unet axmodel model")
parser.add_argument("--vae_decoder_model", type=str, required=False, default="./models/vae_decoder.axmodel", help="Path to vae decoder axmodel model")
parser.add_argument("--time_input", type=str, required=False, default="./models/time_input_txt2img.npy", help="Path to time input file")
parser.add_argument("--save_dir", type=str, required=False, default="./txt2img_output_axe.png", help="Path to the output image file")
return parser.parse_args()
def maybe_convert_prompt(prompt: Union[str, List[str]], tokenizer: "PreTrainedTokenizer"): # noqa: F821
if not isinstance(prompt, List):
prompts = [prompt]
else:
prompts = prompt
prompts = [_maybe_convert_prompt(p, tokenizer) for p in prompts]
if not isinstance(prompt, List):
return prompts[0]
return prompts
def _maybe_convert_prompt(prompt: str, tokenizer: "PreTrainedTokenizer"): # noqa: F821
tokens = tokenizer.tokenize(prompt)
unique_tokens = set(tokens)
for token in unique_tokens:
if token in tokenizer.added_tokens_encoder:
replacement = token
i = 1
while f"{token}_{i}" in tokenizer.added_tokens_encoder:
replacement += f" {token}_{i}"
i += 1
prompt = prompt.replace(token, replacement)
return prompt
def get_embeds(prompt = "Portrait of a pretty girl", tokenizer_dir = "./models/tokenizer", text_encoder_dir = "./models/text_encoder"):
tokenizer = CLIPTokenizer.from_pretrained(tokenizer_dir)
text_inputs = tokenizer(
prompt,
padding="max_length",
max_length=77,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
text_encoder = axengine.InferenceSession(
os.path.join(
text_encoder_dir,
"sd15_text_encoder_sim.axmodel"
),
)
text_encoder_onnx_out = text_encoder.run(None, {"input_ids": text_input_ids.to("cpu").numpy().astype(np.int32)})[0]
prompt_embeds_npy = text_encoder_onnx_out
return prompt_embeds_npy
def get_alphas_cumprod():
betas = torch.linspace(0.00085 ** 0.5, 0.012 ** 0.5, 1000, dtype=torch.float32) ** 2
alphas = 1.0 - betas
alphas_cumprod = torch.cumprod(alphas, dim=0).detach().numpy()
final_alphas_cumprod = alphas_cumprod[0]
self_timesteps = np.arange(0, 1000)[::-1].copy().astype(np.int64)
return alphas_cumprod, final_alphas_cumprod, self_timesteps
if __name__ == '__main__':
args = get_args()
prompt = args.prompt
tokenizer_dir = args.text_model_dir + 'tokenizer'
text_encoder_dir = args.text_model_dir + 'text_encoder'
unet_model = args.unet_model
vae_decoder_model = args.vae_decoder_model
time_input = args.time_input
save_dir = args.save_dir
print(f"prompt: {prompt}")
print(f"text_tokenizer: {tokenizer_dir}")
print(f"text_encoder: {text_encoder_dir}")
print(f"unet_model: {unet_model}")
print(f"vae_decoder_model: {vae_decoder_model}")
print(f"time_input: {time_input}")
print(f"save_dir: {save_dir}")
timesteps = np.array([999, 759, 499, 259]).astype(np.int64)
# text encoder
start = time.time()
# prompt = "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k"
prompt_embeds_npy = get_embeds(prompt, tokenizer_dir, text_encoder_dir)
print(f"text encoder take {(1000 * (time.time() - start)):.1f}ms")
prompt_name = prompt.replace(" ", "_")
latents_shape = [1, 4, 64, 64]
latent = torch.randn(latents_shape, generator=None, device="cpu", dtype=torch.float32,
layout=torch.strided).detach().numpy()
alphas_cumprod, final_alphas_cumprod, self_timesteps = get_alphas_cumprod()
# load unet model and vae model
start = time.time()
unet_session_main = axengine.InferenceSession(unet_model)
vae_decoder = axengine.InferenceSession(vae_decoder_model)
print(f"load models take {(1000 * (time.time() - start)):.1f}ms")
# load time input file
time_input = np.load(time_input)
# unet inference loop
unet_loop_start = time.time()
for i, timestep in enumerate(timesteps):
# print(i, timestep)
unet_start = time.time()
latent = latent.astype(np.float32)
noise_pred = unet_session_main.run(None, {"sample": latent, \
"/down_blocks.0/resnets.0/act_1/Mul_output_0": np.expand_dims(time_input[i], axis=0), \
"encoder_hidden_states": prompt_embeds_npy})[0]
print(f"unet once take {(1000 * (time.time() - unet_start)):.1f}ms")
sample = latent
model_output = noise_pred
if i < 3:
prev_timestep = timesteps[i + 1]
else:
prev_timestep = timestep
alpha_prod_t = alphas_cumprod[timestep]
alpha_prod_t_prev = alphas_cumprod[prev_timestep] if prev_timestep >= 0 else final_alphas_cumprod
beta_prod_t = 1 - alpha_prod_t
beta_prod_t_prev = 1 - alpha_prod_t_prev
# 3. Get scalings for boundary conditions
scaled_timestep = timestep * 10
c_skip = 0.5 ** 2 / (scaled_timestep ** 2 + 0.5 ** 2)
c_out = scaled_timestep / (scaled_timestep ** 2 + 0.5 ** 2) ** 0.5
predicted_original_sample = (sample - (beta_prod_t ** 0.5) * model_output) / (alpha_prod_t ** 0.5)
denoised = c_out * predicted_original_sample + c_skip * sample
if i != 3:
noise = torch.randn(model_output.shape, generator=None, device="cpu", dtype=torch.float32,
layout=torch.strided).to("cpu").detach().numpy()
prev_sample = (alpha_prod_t_prev ** 0.5) * denoised + (beta_prod_t_prev ** 0.5) * noise
else:
prev_sample = denoised
latent = prev_sample
print(f"unet loop take {(1000 * (time.time() - unet_loop_start)):.1f}ms")
# vae inference
vae_start = time.time()
latent = latent / 0.18215
image = vae_decoder.run(None, {"x": latent.astype(np.float32)})[0]
print(f"vae inference take {(1000 * (time.time() - vae_start)):.1f}ms")
# save result
save_start = time.time()
image = np.transpose(image, (0, 2, 3, 1)).squeeze(axis=0)
image_denorm = np.clip(image / 2 + 0.5, 0, 1)
image = (image_denorm * 255).round().astype("uint8")
pil_image = Image.fromarray(image[:, :, :3])
pil_image.save(save_dir)
print(f"save image take {(1000 * (time.time() - save_start)):.1f}ms")
|