File size: 7,505 Bytes
3232548
 
 
 
 
 
 
de35c61
3232548
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de35c61
3232548
 
 
 
 
 
 
 
 
de35c61
 
 
 
 
 
 
 
 
3232548
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9b9cee
3232548
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9b9cee
3232548
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
from typing import List, Union
import numpy as np
# import onnxruntime
import axengine
import torch
from PIL import Image
from transformers import CLIPTokenizer, CLIPTextModel, PreTrainedTokenizer, CLIPTextModelWithProjection
import os
import time
import argparse


def get_args():
    parser = argparse.ArgumentParser(
        prog="StableDiffusion",
        description="Generate picture with the input prompt"
    )
    parser.add_argument("--prompt", type=str, required=False, default="Self-portrait oil painting, a beautiful cyborg with golden hair, 8k", help="the input text prompt")
    parser.add_argument("--text_model_dir", type=str, required=False, default="./models/", help="Path to text encoder and tokenizer files")
    parser.add_argument("--unet_model", type=str, required=False, default="./models/unet.axmodel", help="Path to unet axmodel model")
    parser.add_argument("--vae_decoder_model", type=str, required=False, default="./models/vae_decoder.axmodel", help="Path to vae decoder axmodel model")
    parser.add_argument("--time_input", type=str, required=False, default="./models/time_input_txt2img.npy", help="Path to time input file")
    parser.add_argument("--save_dir", type=str, required=False, default="./txt2img_output_axe.png", help="Path to the output image file")
    return parser.parse_args()

def maybe_convert_prompt(prompt: Union[str, List[str]], tokenizer: "PreTrainedTokenizer"):  # noqa: F821
    if not isinstance(prompt, List):
        prompts = [prompt]
    else:
        prompts = prompt

    prompts = [_maybe_convert_prompt(p, tokenizer) for p in prompts]

    if not isinstance(prompt, List):
        return prompts[0]

    return prompts


def _maybe_convert_prompt(prompt: str, tokenizer: "PreTrainedTokenizer"):  # noqa: F821
    tokens = tokenizer.tokenize(prompt)
    unique_tokens = set(tokens)
    for token in unique_tokens:
        if token in tokenizer.added_tokens_encoder:
            replacement = token
            i = 1
            while f"{token}_{i}" in tokenizer.added_tokens_encoder:
                replacement += f" {token}_{i}"
                i += 1

            prompt = prompt.replace(token, replacement)

    return prompt


def get_embeds(prompt = "Portrait of a pretty girl", tokenizer_dir = "./models/tokenizer", text_encoder_dir = "./models/text_encoder"):
    tokenizer = CLIPTokenizer.from_pretrained(tokenizer_dir)

    text_inputs = tokenizer(
        prompt,
        padding="max_length",
        max_length=77,
        truncation=True,
        return_tensors="pt",
    )
    text_input_ids = text_inputs.input_ids

    text_encoder = axengine.InferenceSession(
        os.path.join(
            text_encoder_dir,
            "sd15_text_encoder_sim.axmodel"
        ),
    )
    text_encoder_onnx_out = text_encoder.run(None, {"input_ids": text_input_ids.to("cpu").numpy().astype(np.int32)})[0]

    prompt_embeds_npy = text_encoder_onnx_out
    return prompt_embeds_npy


def get_alphas_cumprod():
    betas = torch.linspace(0.00085 ** 0.5, 0.012 ** 0.5, 1000, dtype=torch.float32) ** 2
    alphas = 1.0 - betas
    alphas_cumprod = torch.cumprod(alphas, dim=0).detach().numpy()
    final_alphas_cumprod = alphas_cumprod[0]
    self_timesteps = np.arange(0, 1000)[::-1].copy().astype(np.int64)
    return alphas_cumprod, final_alphas_cumprod, self_timesteps


if __name__ == '__main__':
    args = get_args()
    prompt = args.prompt
    tokenizer_dir = args.text_model_dir + 'tokenizer'
    text_encoder_dir = args.text_model_dir + 'text_encoder'
    unet_model = args.unet_model
    vae_decoder_model = args.vae_decoder_model
    time_input = args.time_input
    save_dir = args.save_dir

    print(f"prompt: {prompt}")
    print(f"text_tokenizer: {tokenizer_dir}")
    print(f"text_encoder: {text_encoder_dir}")
    print(f"unet_model: {unet_model}")
    print(f"vae_decoder_model: {vae_decoder_model}")
    print(f"time_input: {time_input}")
    print(f"save_dir: {save_dir}")

    timesteps = np.array([999, 759, 499, 259]).astype(np.int64)
    
    # text encoder
    start = time.time()    
    # prompt = "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k"
    prompt_embeds_npy = get_embeds(prompt, tokenizer_dir, text_encoder_dir)
    print(f"text encoder take {(1000 * (time.time() - start)):.1f}ms")
    
    prompt_name = prompt.replace(" ", "_")
    latents_shape = [1, 4, 64, 64]
    latent = torch.randn(latents_shape, generator=None, device="cpu", dtype=torch.float32,
                         layout=torch.strided).detach().numpy()
    
    alphas_cumprod, final_alphas_cumprod, self_timesteps = get_alphas_cumprod()
    
    # load unet model and vae model
    start = time.time()    
    unet_session_main = axengine.InferenceSession(unet_model)
    vae_decoder = axengine.InferenceSession(vae_decoder_model)
    print(f"load models take {(1000 * (time.time() - start)):.1f}ms")
    
    # load time input file
    time_input = np.load(time_input)
    
    # unet inference loop
    unet_loop_start = time.time()    
    for i, timestep in enumerate(timesteps):
        # print(i, timestep)
        
        unet_start = time.time()
        latent = latent.astype(np.float32)
        noise_pred = unet_session_main.run(None, {"sample": latent, \
                                            "/down_blocks.0/resnets.0/act_1/Mul_output_0": np.expand_dims(time_input[i], axis=0), \
                                            "encoder_hidden_states": prompt_embeds_npy})[0]
                                            
        print(f"unet once take {(1000 * (time.time() - unet_start)):.1f}ms")

        sample = latent
        model_output = noise_pred
        if i < 3:
            prev_timestep = timesteps[i + 1]
        else:
            prev_timestep = timestep

        alpha_prod_t = alphas_cumprod[timestep]
        alpha_prod_t_prev = alphas_cumprod[prev_timestep] if prev_timestep >= 0 else final_alphas_cumprod

        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

        # 3. Get scalings for boundary conditions
        scaled_timestep = timestep * 10
        c_skip = 0.5 ** 2 / (scaled_timestep ** 2 + 0.5 ** 2)
        c_out = scaled_timestep / (scaled_timestep ** 2 + 0.5 ** 2) ** 0.5
        predicted_original_sample = (sample - (beta_prod_t ** 0.5) * model_output) / (alpha_prod_t ** 0.5)

        denoised = c_out * predicted_original_sample + c_skip * sample

        if i != 3:
            noise = torch.randn(model_output.shape, generator=None, device="cpu", dtype=torch.float32,
                                layout=torch.strided).to("cpu").detach().numpy()
            prev_sample = (alpha_prod_t_prev ** 0.5) * denoised + (beta_prod_t_prev ** 0.5) * noise
        else:
            prev_sample = denoised

        latent = prev_sample

    print(f"unet loop take {(1000 * (time.time() - unet_loop_start)):.1f}ms")

    # vae inference
    vae_start = time.time()    
    latent = latent / 0.18215
    image = vae_decoder.run(None, {"x": latent.astype(np.float32)})[0]
    print(f"vae inference take {(1000 * (time.time() - vae_start)):.1f}ms")
    
    # save result
    save_start = time.time() 
    image = np.transpose(image, (0, 2, 3, 1)).squeeze(axis=0)
    image_denorm = np.clip(image / 2 + 0.5, 0, 1)
    image = (image_denorm * 255).round().astype("uint8")
    pil_image = Image.fromarray(image[:, :, :3])
    pil_image.save(save_dir)
    print(f"save image take {(1000 * (time.time() - save_start)):.1f}ms")