metadata
language:
- ar
- en
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:34436
- loss:MatryoshkaLoss
- loss:CoSENTLoss
base_model: AhmedZaky1/DIMI-embedding-v2
widget:
- source_sentence: الرجل يركب حصاناً
sentences:
- رجل يُبث الجبن الممزق على البيتزا
- ar-ar
- رجل يركب حصاناً
- source_sentence: المرأة تقلي لحم خنزير مشوي
sentences:
- ar-ar
- امرأة تطبخ لحم خنزير مخبوز
- طائرة طيران تقلع
- source_sentence: امرأة تحمل في ذراعها طفل كنغر
sentences:
- امرأة تعزف على الغيتار
- ar-ar
- امرأة تحمل و تحمل طفل كنغر
- source_sentence: رجل يعزف على الناي
sentences:
- طائرة ستقلع
- ar-ar
- رجل يعزف على فرقة الخيزران
- source_sentence: ثلاثة رجال يلعبون الشطرنج.
sentences:
- رجلين يلعبان الشطرنج
- بعض الرجال يقاتلون
- ar-ar
datasets:
- silma-ai/silma-arabic-english-sts-dataset-v1.0
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: SentenceTransformer based on AhmedZaky1/DIMI-embedding-v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: silma sts dev 768
type: silma-sts-dev-768
metrics:
- type: pearson_cosine
value: 0.8894298077237747
name: Pearson Cosine
- type: spearman_cosine
value: 0.8357984695231979
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: silma sts dev 512
type: silma-sts-dev-512
metrics:
- type: pearson_cosine
value: 0.8958835653694187
name: Pearson Cosine
- type: spearman_cosine
value: 0.8394578198917563
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: silma sts dev 256
type: silma-sts-dev-256
metrics:
- type: pearson_cosine
value: 0.9078743376141943
name: Pearson Cosine
- type: spearman_cosine
value: 0.8470163055535588
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: silma sts dev 128
type: silma-sts-dev-128
metrics:
- type: pearson_cosine
value: 0.9181556833949818
name: Pearson Cosine
- type: spearman_cosine
value: 0.856188415278301
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: silma sts dev 64
type: silma-sts-dev-64
metrics:
- type: pearson_cosine
value: 0.9066219844975816
name: Pearson Cosine
- type: spearman_cosine
value: 0.8434430083292863
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts17 ar test 768
type: sts17-ar-test-768
metrics:
- type: pearson_cosine
value: 0.8205269118955641
name: Pearson Cosine
- type: spearman_cosine
value: 0.8258003312254673
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts17 ar test 512
type: sts17-ar-test-512
metrics:
- type: pearson_cosine
value: 0.8193403796404517
name: Pearson Cosine
- type: spearman_cosine
value: 0.8226611918447921
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts17 ar test 256
type: sts17-ar-test-256
metrics:
- type: pearson_cosine
value: 0.8190666923783347
name: Pearson Cosine
- type: spearman_cosine
value: 0.8245760514866052
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts17 ar test 128
type: sts17-ar-test-128
metrics:
- type: pearson_cosine
value: 0.8114629254813825
name: Pearson Cosine
- type: spearman_cosine
value: 0.8183273799928091
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts17 ar test 64
type: sts17-ar-test-64
metrics:
- type: pearson_cosine
value: 0.796172574267003
name: Pearson Cosine
- type: spearman_cosine
value: 0.8077141358495715
name: Spearman Cosine
SentenceTransformer based on AhmedZaky1/DIMI-embedding-v2
This is a sentence-transformers model finetuned from AhmedZaky1/DIMI-embedding-v2 on the silma-arabic-english-sts-dataset-v1.0 dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: AhmedZaky1/DIMI-embedding-v2
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Languages: ar, en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("AhmedZaky1/DIMI-embedding-v2-silma-sts-matryoshka")
# Run inference
sentences = [
'ثلاثة رجال يلعبون الشطرنج.',
'رجلين يلعبان الشطرنج',
'ar-ar',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Datasets:
silma-sts-dev-768
,silma-sts-dev-512
,silma-sts-dev-256
,silma-sts-dev-128
,silma-sts-dev-64
,sts17-ar-test-768
,sts17-ar-test-512
,sts17-ar-test-256
,sts17-ar-test-128
andsts17-ar-test-64
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | silma-sts-dev-768 | silma-sts-dev-512 | silma-sts-dev-256 | silma-sts-dev-128 | silma-sts-dev-64 | sts17-ar-test-768 | sts17-ar-test-512 | sts17-ar-test-256 | sts17-ar-test-128 | sts17-ar-test-64 |
---|---|---|---|---|---|---|---|---|---|---|
pearson_cosine | 0.8894 | 0.8959 | 0.9079 | 0.9182 | 0.9066 | 0.8205 | 0.8193 | 0.8191 | 0.8115 | 0.7962 |
spearman_cosine | 0.8358 | 0.8395 | 0.847 | 0.8562 | 0.8434 | 0.8258 | 0.8227 | 0.8246 | 0.8183 | 0.8077 |
Training Details
Training Dataset
silma-arabic-english-sts-dataset-v1.0
- Dataset: silma-arabic-english-sts-dataset-v1.0 at 1885690
- Size: 34,436 training samples
- Columns:
sentence1
,sentence2
,score
, andlangs
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score langs type string string float string details - min: 4 tokens
- mean: 9.68 tokens
- max: 26 tokens
- min: 4 tokens
- mean: 9.68 tokens
- max: 26 tokens
- min: 0.0
- mean: 0.47
- max: 1.0
- min: 5 tokens
- mean: 5.0 tokens
- max: 5 tokens
- Samples:
sentence1 sentence2 score langs رجل يعزف على البيانو
امرأة تعزف على الكمان
0.2
ar-ar
امرأة تعزف على الكمان
رجل يعزف على البيانو
0.2
ar-ar
امرأة تعزف على الناي.
رجل يعزف على الغيتار
0.2
ar-ar
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "CoSENTLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Evaluation Dataset
silma-arabic-english-sts-dataset-v1.0
- Dataset: silma-arabic-english-sts-dataset-v1.0 at 1885690
- Size: 100 evaluation samples
- Columns:
sentence1
,sentence2
,score
, andlangs
- Approximate statistics based on the first 100 samples:
sentence1 sentence2 score langs type string string float string details - min: 5 tokens
- mean: 9.49 tokens
- max: 19 tokens
- min: 5 tokens
- mean: 9.49 tokens
- max: 19 tokens
- min: 0.1
- mean: 0.74
- max: 1.0
- min: 5 tokens
- mean: 5.0 tokens
- max: 5 tokens
- Samples:
sentence1 sentence2 score langs طائرة ستقلع
طائرة طيران تقلع
1.0
ar-ar
طائرة طيران تقلع
طائرة ستقلع
1.0
ar-ar
رجل يعزف على ناي كبير
رجل يعزف على الناي
0.76
ar-ar
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "CoSENTLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 4warmup_ratio
: 0.1save_only_model
: Truefp16
: Trueload_best_model_at_end
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Truerestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | silma-sts-dev-768_spearman_cosine | silma-sts-dev-512_spearman_cosine | silma-sts-dev-256_spearman_cosine | silma-sts-dev-128_spearman_cosine | silma-sts-dev-64_spearman_cosine | sts17-ar-test-768_spearman_cosine | sts17-ar-test-512_spearman_cosine | sts17-ar-test-256_spearman_cosine | sts17-ar-test-128_spearman_cosine | sts17-ar-test-64_spearman_cosine |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.0929 | 100 | 39.5796 | 45.0982 | 0.7199 | 0.7173 | 0.7292 | 0.7433 | 0.7196 | - | - | - | - | - |
0.1857 | 200 | 31.3305 | 29.9877 | 0.7233 | 0.7248 | 0.7344 | 0.7337 | 0.7192 | - | - | - | - | - |
0.2786 | 300 | 27.7756 | 31.4644 | 0.7288 | 0.7268 | 0.7331 | 0.7388 | 0.7169 | - | - | - | - | - |
0.3714 | 400 | 27.7405 | 33.3315 | 0.7172 | 0.7168 | 0.7341 | 0.7349 | 0.7219 | - | - | - | - | - |
0.4643 | 500 | 27.1884 | 30.4957 | 0.7469 | 0.7428 | 0.7475 | 0.7547 | 0.7426 | - | - | - | - | - |
0.5571 | 600 | 27.0428 | 29.5877 | 0.7133 | 0.7138 | 0.7380 | 0.7549 | 0.7533 | - | - | - | - | - |
0.6500 | 700 | 26.7957 | 30.3813 | 0.7520 | 0.7430 | 0.7570 | 0.7604 | 0.7647 | - | - | - | - | - |
0.7428 | 800 | 26.2667 | 30.6293 | 0.7323 | 0.7333 | 0.7558 | 0.7609 | 0.7479 | - | - | - | - | - |
0.8357 | 900 | 25.9412 | 29.8621 | 0.7730 | 0.7732 | 0.7913 | 0.8117 | 0.7797 | - | - | - | - | - |
0.9285 | 1000 | 25.7816 | 31.7315 | 0.7856 | 0.7918 | 0.7916 | 0.8025 | 0.8048 | - | - | - | - | - |
1.0214 | 1100 | 25.1666 | 31.6311 | 0.7651 | 0.7668 | 0.7673 | 0.7826 | 0.7846 | - | - | - | - | - |
1.1142 | 1200 | 24.7681 | 32.3005 | 0.7719 | 0.7892 | 0.7941 | 0.8022 | 0.7939 | - | - | - | - | - |
1.2071 | 1300 | 24.8771 | 32.1761 | 0.7660 | 0.7744 | 0.7807 | 0.7884 | 0.7841 | - | - | - | - | - |
1.2999 | 1400 | 24.9063 | 33.2694 | 0.7646 | 0.7644 | 0.7884 | 0.7906 | 0.7886 | - | - | - | - | - |
1.3928 | 1500 | 24.7283 | 32.4350 | 0.7935 | 0.7974 | 0.8071 | 0.8112 | 0.8062 | - | - | - | - | - |
1.4856 | 1600 | 24.4217 | 34.1219 | 0.7781 | 0.7754 | 0.7739 | 0.7916 | 0.7889 | - | - | - | - | - |
1.5785 | 1700 | 24.4923 | 33.1239 | 0.7636 | 0.7709 | 0.7882 | 0.7991 | 0.7913 | - | - | - | - | - |
1.6713 | 1800 | 24.0844 | 33.5233 | 0.7785 | 0.7832 | 0.7880 | 0.7977 | 0.8014 | - | - | - | - | - |
1.7642 | 1900 | 24.1453 | 35.4602 | 0.7795 | 0.7816 | 0.8053 | 0.8115 | 0.7944 | - | - | - | - | - |
1.8570 | 2000 | 24.2271 | 36.2812 | 0.8003 | 0.8009 | 0.8008 | 0.8102 | 0.8009 | - | - | - | - | - |
1.9499 | 2100 | 23.7371 | 37.0276 | 0.7769 | 0.7866 | 0.7918 | 0.7926 | 0.7832 | - | - | - | - | - |
2.0427 | 2200 | 23.3566 | 34.5721 | 0.7931 | 0.8017 | 0.8020 | 0.8159 | 0.8027 | - | - | - | - | - |
2.1356 | 2300 | 23.2523 | 35.5316 | 0.7931 | 0.7981 | 0.7896 | 0.8157 | 0.8142 | - | - | - | - | - |
2.2284 | 2400 | 23.0447 | 36.6811 | 0.7973 | 0.7962 | 0.7935 | 0.8030 | 0.8037 | - | - | - | - | - |
2.3213 | 2500 | 22.9782 | 37.5482 | 0.8121 | 0.8185 | 0.8200 | 0.8293 | 0.8244 | - | - | - | - | - |
2.4141 | 2600 | 22.9119 | 37.2809 | 0.8077 | 0.8116 | 0.8113 | 0.8333 | 0.8151 | - | - | - | - | - |
2.5070 | 2700 | 23.1302 | 37.7993 | 0.8255 | 0.8304 | 0.8310 | 0.8376 | 0.8303 | - | - | - | - | - |
2.5998 | 2800 | 22.9941 | 38.8005 | 0.8182 | 0.8214 | 0.8143 | 0.8193 | 0.8155 | - | - | - | - | - |
2.6927 | 2900 | 22.8876 | 36.2524 | 0.8201 | 0.8222 | 0.8194 | 0.8347 | 0.8260 | - | - | - | - | - |
2.7855 | 3000 | 22.5304 | 38.1523 | 0.8195 | 0.8280 | 0.8356 | 0.8545 | 0.8394 | - | - | - | - | - |
2.8784 | 3100 | 22.446 | 39.4876 | 0.8242 | 0.8246 | 0.8319 | 0.8483 | 0.8397 | - | - | - | - | - |
2.9712 | 3200 | 22.5077 | 39.1910 | 0.8231 | 0.8249 | 0.8334 | 0.8475 | 0.8372 | - | - | - | - | - |
3.0641 | 3300 | 21.9675 | 36.4245 | 0.8408 | 0.8425 | 0.8456 | 0.8619 | 0.8577 | - | - | - | - | - |
3.1569 | 3400 | 21.9361 | 36.7119 | 0.8344 | 0.8405 | 0.8460 | 0.8656 | 0.8644 | - | - | - | - | - |
3.2498 | 3500 | 21.7747 | 37.7140 | 0.8279 | 0.8353 | 0.8414 | 0.8510 | 0.8446 | - | - | - | - | - |
3.3426 | 3600 | 21.8649 | 38.9102 | 0.8298 | 0.8331 | 0.8456 | 0.8494 | 0.8447 | - | - | - | - | - |
3.4355 | 3700 | 21.794 | 37.4385 | 0.8278 | 0.8328 | 0.8377 | 0.8442 | 0.8373 | - | - | - | - | - |
3.5283 | 3800 | 21.7968 | 37.0225 | 0.8352 | 0.8501 | 0.8540 | 0.8722 | 0.8553 | - | - | - | - | - |
3.6212 | 3900 | 21.5941 | 37.5736 | 0.8344 | 0.8515 | 0.8511 | 0.8643 | 0.8587 | - | - | - | - | - |
3.7140 | 4000 | 21.8181 | 37.4984 | 0.8340 | 0.8440 | 0.8470 | 0.8607 | 0.8484 | - | - | - | - | - |
3.8069 | 4100 | 21.7035 | 37.9701 | 0.8346 | 0.8394 | 0.8436 | 0.8615 | 0.8479 | - | - | - | - | - |
3.8997 | 4200 | 21.398 | 38.1567 | 0.8349 | 0.8365 | 0.8470 | 0.8572 | 0.8405 | - | - | - | - | - |
3.9926 | 4300 | 21.6518 | 38.3515 | 0.8358 | 0.8395 | 0.8470 | 0.8562 | 0.8434 | - | - | - | - | - |
4.0 | 4308 | - | - | - | - | - | - | - | 0.8258 | 0.8227 | 0.8246 | 0.8183 | 0.8077 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.12.7
- Sentence Transformers: 3.3.1
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.4.0
- Datasets: 3.3.2
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}