Built with Axolotl

See axolotl config

axolotl version: 0.8.0.dev0

base_model: mistralai/Mistral-7B-Instruct-v0.3
# optionally might have model_type or tokenizer_type
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
# Automatically upload checkpoint and final model to HF
hub_model_id: AiAF/Pretrained-QLoRA-r9kilo-V1

load_in_8bit: false
load_in_4bit: true
strict: false

datasets:
  - path: json
    data_files: ["pretraining.jsonl"]
    type: completion

dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./outputs/qlora-out
save_total_limit: 1000

adapter: qlora
lora_model_dir:
lora_r: 256
lora_alpha: 512
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
  - gate_proj
  - down_proj
  - up_proj
  - q_proj
  - v_proj
  - k_proj
  - o_proj

sequence_len: 512
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false

wandb_project: "LLM-Pretraining"
wandb_watch: "all"
wandb_name: "QLoRA-9000-LLM_Datasets-V1"
wandb_log_model: "false"
wandb_run_id: "QLoRA-9000-LLM_Datasets-V1"

gradient_accumulation_steps: 4
micro_batch_size: 64
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.00000047 #0.0000033 #0.000005

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 15
evals_per_epoch: 10
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 5
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:

Pretrained-QLoRA-r9kilo-V1

This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.3 on the json dataset. It achieves the following results on the evaluation set:

  • Loss: 2.0777

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4.7e-07
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 15
  • num_epochs: 4.0

Training results

Training Loss Epoch Step Validation Loss
2.4054 0.0126 1 2.3746
2.3966 0.1006 8 2.3649
2.3607 0.2013 16 2.3105
2.2822 0.3019 24 2.2564
2.2658 0.4025 32 2.2115
2.2261 0.5031 40 2.1804
2.1511 0.6038 48 2.1578
2.1752 0.7044 56 2.1431
2.1718 0.8050 64 2.1331
2.1669 0.9057 72 2.1237
2.1408 1.0 80 2.1135
2.1057 1.1006 88 2.1085
2.1289 1.2013 96 2.1038
2.0875 1.3019 104 2.0994
2.1468 1.4025 112 2.0960
2.1295 1.5031 120 2.0933
2.1162 1.6038 128 2.0910
2.1073 1.7044 136 2.0891
2.1002 1.8050 144 2.0875
2.1017 1.9057 152 2.0860
2.0871 2.0 160 2.0849
2.0889 2.1006 168 2.0838
2.1011 2.2013 176 2.0828
2.1061 2.3019 184 2.0820
2.1024 2.4025 192 2.0812
2.1313 2.5031 200 2.0807
2.1128 2.6038 208 2.0801
2.0528 2.7044 216 2.0796
2.1116 2.8050 224 2.0792
2.1395 2.9057 232 2.0789
2.1217 3.0 240 2.0786
2.1046 3.1006 248 2.0784
2.1093 3.2013 256 2.0781
2.1218 3.3019 264 2.0780
2.1058 3.4025 272 2.0779
2.1027 3.5031 280 2.0778
2.0832 3.6038 288 2.0778
2.1026 3.7044 296 2.0777
2.1173 3.8050 304 2.0777
2.1293 3.9057 312 2.0777

Framework versions

  • PEFT 0.14.0
  • Transformers 4.49.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
3
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for AiAF/Pretrained-QLoRA-r9kilo-V1

Adapter
(392)
this model