Upload folder using huggingface_hub
Browse files- .ipynb_checkpoints/Untitled-checkpoint.ipynb +99 -0
- .ipynb_checkpoints/pipeline_waifu-checkpoint.py +288 -0
- Untitled.ipynb +44 -123
- pipeline_waifu.py +4 -0
.ipynb_checkpoints/Untitled-checkpoint.ipynb
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 13,
|
6 |
+
"id": "dca3239c-17d6-4284-a2cf-83237a55a7df",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [
|
9 |
+
{
|
10 |
+
"ename": "AttributeError",
|
11 |
+
"evalue": "module 'diffusers_modules.local.pipeline_waifu' has no attribute 'WaifuPipeline'",
|
12 |
+
"output_type": "error",
|
13 |
+
"traceback": [
|
14 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
15 |
+
"\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
|
16 |
+
"Cell \u001b[0;32mIn[13], line 6\u001b[0m\n\u001b[1;32m 4\u001b[0m pipe_id \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m/home/recoilme/models/waifu-2b\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 5\u001b[0m variant \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mfp16\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m----> 6\u001b[0m pipe \u001b[38;5;241m=\u001b[39m \u001b[43mDiffusionPipeline\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_pretrained\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 7\u001b[0m \u001b[43m \u001b[49m\u001b[43mpipe_id\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\n\u001b[1;32m 8\u001b[0m \u001b[43m \u001b[49m\u001b[43mvariant\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mvariant\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 9\u001b[0m \u001b[43m \u001b[49m\u001b[43mtrust_remote_code\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\n\u001b[1;32m 10\u001b[0m \u001b[43m)\u001b[49m\n\u001b[1;32m 11\u001b[0m \u001b[38;5;28mprint\u001b[39m(pipe)\n\u001b[1;32m 12\u001b[0m \u001b[38;5;66;03m#pipe_sd.to(\"cuda\")\u001b[39;00m\n",
|
17 |
+
"File \u001b[0;32m~/.local/lib/python3.11/site-packages/huggingface_hub/utils/_validators.py:114\u001b[0m, in \u001b[0;36mvalidate_hf_hub_args.<locals>._inner_fn\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 111\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m check_use_auth_token:\n\u001b[1;32m 112\u001b[0m kwargs \u001b[38;5;241m=\u001b[39m smoothly_deprecate_use_auth_token(fn_name\u001b[38;5;241m=\u001b[39mfn\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m, has_token\u001b[38;5;241m=\u001b[39mhas_token, kwargs\u001b[38;5;241m=\u001b[39mkwargs)\n\u001b[0;32m--> 114\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
|
18 |
+
"File \u001b[0;32m~/.local/lib/python3.11/site-packages/diffusers/pipelines/pipeline_utils.py:785\u001b[0m, in \u001b[0;36mDiffusionPipeline.from_pretrained\u001b[0;34m(cls, pretrained_model_name_or_path, **kwargs)\u001b[0m\n\u001b[1;32m 780\u001b[0m \u001b[38;5;66;03m# 3. Load the pipeline class, if using custom module then load it from the hub\u001b[39;00m\n\u001b[1;32m 781\u001b[0m \u001b[38;5;66;03m# if we load from explicit class, let's use it\u001b[39;00m\n\u001b[1;32m 782\u001b[0m custom_pipeline, custom_class_name \u001b[38;5;241m=\u001b[39m _resolve_custom_pipeline_and_cls(\n\u001b[1;32m 783\u001b[0m folder\u001b[38;5;241m=\u001b[39mcached_folder, config\u001b[38;5;241m=\u001b[39mconfig_dict, custom_pipeline\u001b[38;5;241m=\u001b[39mcustom_pipeline\n\u001b[1;32m 784\u001b[0m )\n\u001b[0;32m--> 785\u001b[0m pipeline_class \u001b[38;5;241m=\u001b[39m \u001b[43m_get_pipeline_class\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 786\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mcls\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 787\u001b[0m \u001b[43m \u001b[49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig_dict\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 788\u001b[0m \u001b[43m \u001b[49m\u001b[43mload_connected_pipeline\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mload_connected_pipeline\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 789\u001b[0m \u001b[43m \u001b[49m\u001b[43mcustom_pipeline\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcustom_pipeline\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 790\u001b[0m \u001b[43m \u001b[49m\u001b[43mclass_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcustom_class_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 791\u001b[0m \u001b[43m \u001b[49m\u001b[43mcache_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcache_dir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 792\u001b[0m \u001b[43m \u001b[49m\u001b[43mrevision\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcustom_revision\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 793\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 795\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m device_map \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m pipeline_class\u001b[38;5;241m.\u001b[39m_load_connected_pipes:\n\u001b[1;32m 796\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mNotImplementedError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m`device_map` is not yet supported for connected pipelines.\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
|
19 |
+
"File \u001b[0;32m~/.local/lib/python3.11/site-packages/diffusers/pipelines/pipeline_loading_utils.py:370\u001b[0m, in \u001b[0;36m_get_pipeline_class\u001b[0;34m(class_obj, config, load_connected_pipeline, custom_pipeline, repo_id, hub_revision, class_name, cache_dir, revision)\u001b[0m\n\u001b[1;32m 358\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_get_pipeline_class\u001b[39m(\n\u001b[1;32m 359\u001b[0m class_obj,\n\u001b[1;32m 360\u001b[0m config\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 367\u001b[0m revision\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 368\u001b[0m ):\n\u001b[1;32m 369\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m custom_pipeline \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m--> 370\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_get_custom_pipeline_class\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 371\u001b[0m \u001b[43m \u001b[49m\u001b[43mcustom_pipeline\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 372\u001b[0m \u001b[43m \u001b[49m\u001b[43mrepo_id\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrepo_id\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 373\u001b[0m \u001b[43m \u001b[49m\u001b[43mhub_revision\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mhub_revision\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 374\u001b[0m \u001b[43m \u001b[49m\u001b[43mclass_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mclass_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 375\u001b[0m \u001b[43m \u001b[49m\u001b[43mcache_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcache_dir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 376\u001b[0m \u001b[43m \u001b[49m\u001b[43mrevision\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrevision\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 377\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 379\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m class_obj\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m \u001b[38;5;241m!=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mDiffusionPipeline\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[1;32m 380\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m class_obj\n",
|
20 |
+
"File \u001b[0;32m~/.local/lib/python3.11/site-packages/diffusers/pipelines/pipeline_loading_utils.py:349\u001b[0m, in \u001b[0;36m_get_custom_pipeline_class\u001b[0;34m(custom_pipeline, repo_id, hub_revision, class_name, cache_dir, revision)\u001b[0m\n\u001b[1;32m 344\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m repo_id \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m hub_revision \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 345\u001b[0m \u001b[38;5;66;03m# if we load the pipeline code from the Hub\u001b[39;00m\n\u001b[1;32m 346\u001b[0m \u001b[38;5;66;03m# make sure to overwrite the `revision`\u001b[39;00m\n\u001b[1;32m 347\u001b[0m revision \u001b[38;5;241m=\u001b[39m hub_revision\n\u001b[0;32m--> 349\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mget_class_from_dynamic_module\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 350\u001b[0m \u001b[43m \u001b[49m\u001b[43mcustom_pipeline\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 351\u001b[0m \u001b[43m \u001b[49m\u001b[43mmodule_file\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfile_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 352\u001b[0m \u001b[43m \u001b[49m\u001b[43mclass_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mclass_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 353\u001b[0m \u001b[43m \u001b[49m\u001b[43mcache_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcache_dir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 354\u001b[0m \u001b[43m \u001b[49m\u001b[43mrevision\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrevision\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 355\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
|
21 |
+
"File \u001b[0;32m~/.local/lib/python3.11/site-packages/huggingface_hub/utils/_validators.py:114\u001b[0m, in \u001b[0;36mvalidate_hf_hub_args.<locals>._inner_fn\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 111\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m check_use_auth_token:\n\u001b[1;32m 112\u001b[0m kwargs \u001b[38;5;241m=\u001b[39m smoothly_deprecate_use_auth_token(fn_name\u001b[38;5;241m=\u001b[39mfn\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m, has_token\u001b[38;5;241m=\u001b[39mhas_token, kwargs\u001b[38;5;241m=\u001b[39mkwargs)\n\u001b[0;32m--> 114\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
|
22 |
+
"File \u001b[0;32m~/.local/lib/python3.11/site-packages/diffusers/utils/dynamic_modules_utils.py:457\u001b[0m, in \u001b[0;36mget_class_from_dynamic_module\u001b[0;34m(pretrained_model_name_or_path, module_file, class_name, cache_dir, force_download, proxies, token, revision, local_files_only, **kwargs)\u001b[0m\n\u001b[1;32m 446\u001b[0m \u001b[38;5;66;03m# And lastly we get the class inside our newly created module\u001b[39;00m\n\u001b[1;32m 447\u001b[0m final_module \u001b[38;5;241m=\u001b[39m get_cached_module_file(\n\u001b[1;32m 448\u001b[0m pretrained_model_name_or_path,\n\u001b[1;32m 449\u001b[0m module_file,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 455\u001b[0m local_files_only\u001b[38;5;241m=\u001b[39mlocal_files_only,\n\u001b[1;32m 456\u001b[0m )\n\u001b[0;32m--> 457\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mget_class_in_module\u001b[49m\u001b[43m(\u001b[49m\u001b[43mclass_name\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfinal_module\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mreplace\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m.py\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n",
|
23 |
+
"File \u001b[0;32m~/.local/lib/python3.11/site-packages/diffusers/utils/dynamic_modules_utils.py:166\u001b[0m, in \u001b[0;36mget_class_in_module\u001b[0;34m(class_name, module_path)\u001b[0m\n\u001b[1;32m 164\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m class_name \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 165\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m find_pipeline_class(module)\n\u001b[0;32m--> 166\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mgetattr\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mmodule\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mclass_name\u001b[49m\u001b[43m)\u001b[49m\n",
|
24 |
+
"\u001b[0;31mAttributeError\u001b[0m: module 'diffusers_modules.local.pipeline_waifu' has no attribute 'WaifuPipeline'"
|
25 |
+
]
|
26 |
+
}
|
27 |
+
],
|
28 |
+
"source": [
|
29 |
+
"import torch\n",
|
30 |
+
"from diffusers import DiffusionPipeline\n",
|
31 |
+
"\n",
|
32 |
+
"pipe_id = \"/home/recoilme/models/waifu-2b\"\n",
|
33 |
+
"variant = \"fp16\"\n",
|
34 |
+
"pipe = DiffusionPipeline.from_pretrained(\n",
|
35 |
+
" pipe_id, \n",
|
36 |
+
" variant=variant,\n",
|
37 |
+
" trust_remote_code=True\n",
|
38 |
+
")\n",
|
39 |
+
"print(pipe)\n",
|
40 |
+
"#pipe_sd.to(\"cuda\")"
|
41 |
+
]
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"cell_type": "code",
|
45 |
+
"execution_count": null,
|
46 |
+
"id": "b6ebc579-0eb2-4828-89d5-b40f6d5e758e",
|
47 |
+
"metadata": {},
|
48 |
+
"outputs": [],
|
49 |
+
"source": [
|
50 |
+
"SanaPipeline {\n",
|
51 |
+
" \"_class_name\": \"SanaPipeline\",\n",
|
52 |
+
" \"_diffusers_version\": \"0.32.0.dev0\",\n",
|
53 |
+
" \"_name_or_path\": \"AiArtLab/waifu-2b\",\n",
|
54 |
+
" \"scheduler\": [\n",
|
55 |
+
" \"diffusers\",\n",
|
56 |
+
" \"FlowMatchEulerDiscreteScheduler\"\n",
|
57 |
+
" ],\n",
|
58 |
+
" \"text_encoder\": [\n",
|
59 |
+
" \"transformers\",\n",
|
60 |
+
" \"XLMRobertaModel\"\n",
|
61 |
+
" ],\n",
|
62 |
+
" \"tokenizer\": [\n",
|
63 |
+
" \"transformers\",\n",
|
64 |
+
" \"XLMRobertaTokenizerFast\"\n",
|
65 |
+
" ],\n",
|
66 |
+
" \"transformer\": [\n",
|
67 |
+
" \"diffusers\",\n",
|
68 |
+
" \"SanaTransformer2DModel\"\n",
|
69 |
+
" ],\n",
|
70 |
+
" \"vae\": [\n",
|
71 |
+
" \"diffusers\",\n",
|
72 |
+
" \"AutoencoderKL\"\n",
|
73 |
+
" ]\n",
|
74 |
+
"}\n"
|
75 |
+
]
|
76 |
+
}
|
77 |
+
],
|
78 |
+
"metadata": {
|
79 |
+
"kernelspec": {
|
80 |
+
"display_name": "Python 3 (ipykernel)",
|
81 |
+
"language": "python",
|
82 |
+
"name": "python3"
|
83 |
+
},
|
84 |
+
"language_info": {
|
85 |
+
"codemirror_mode": {
|
86 |
+
"name": "ipython",
|
87 |
+
"version": 3
|
88 |
+
},
|
89 |
+
"file_extension": ".py",
|
90 |
+
"mimetype": "text/x-python",
|
91 |
+
"name": "python",
|
92 |
+
"nbconvert_exporter": "python",
|
93 |
+
"pygments_lexer": "ipython3",
|
94 |
+
"version": "3.11.6"
|
95 |
+
}
|
96 |
+
},
|
97 |
+
"nbformat": 4,
|
98 |
+
"nbformat_minor": 5
|
99 |
+
}
|
.ipynb_checkpoints/pipeline_waifu-checkpoint.py
ADDED
@@ -0,0 +1,288 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from diffusers import DiffusionPipeline
|
3 |
+
|
4 |
+
# waifu
|
5 |
+
# tokenizer
|
6 |
+
from transformers import XLMRobertaTokenizerFast
|
7 |
+
# text_encoder
|
8 |
+
from transformers import XLMRobertaModel
|
9 |
+
# scheduler
|
10 |
+
from diffusers import FlowMatchEulerDiscreteScheduler
|
11 |
+
# VAE
|
12 |
+
from diffusers.models import AutoencoderKL
|
13 |
+
# Transformer
|
14 |
+
from diffusers import SanaTransformer2DModel
|
15 |
+
|
16 |
+
|
17 |
+
class WaifuPipeline(DiffusionPipeline):
|
18 |
+
r"""
|
19 |
+
Pipeline for text-to-image generation using [waifu](https://github.com/recoilme/waifu).
|
20 |
+
"""
|
21 |
+
|
22 |
+
model_cpu_offload_seq = "text_encoder->transformer->vae"
|
23 |
+
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
|
24 |
+
|
25 |
+
def __init__(
|
26 |
+
self,
|
27 |
+
tokenizer: XLMRobertaTokenizerFast,
|
28 |
+
text_encoder: XLMRobertaModel,
|
29 |
+
vae: AutoencoderKL,
|
30 |
+
transformer: SanaTransformer2DModel,
|
31 |
+
scheduler: FlowMatchEulerDiscreteScheduler,
|
32 |
+
):
|
33 |
+
super().__init__()
|
34 |
+
|
35 |
+
self.register_modules(
|
36 |
+
tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler
|
37 |
+
)
|
38 |
+
|
39 |
+
self.vae_scale_factor = 8
|
40 |
+
self.image_processor = PixArtImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
41 |
+
|
42 |
+
@torch.no_grad()
|
43 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
44 |
+
def __call__(
|
45 |
+
self,
|
46 |
+
prompt: Union[str, List[str]] = None,
|
47 |
+
negative_prompt: str = "",
|
48 |
+
num_inference_steps: int = 20,
|
49 |
+
timesteps: List[int] = None,
|
50 |
+
sigmas: List[float] = None,
|
51 |
+
guidance_scale: float = 4.5,
|
52 |
+
num_images_per_prompt: Optional[int] = 1,
|
53 |
+
height: int = 512,
|
54 |
+
width: int = 512,
|
55 |
+
eta: float = 0.0,
|
56 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
57 |
+
latents: Optional[torch.Tensor] = None,
|
58 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
59 |
+
prompt_attention_mask: Optional[torch.Tensor] = None,
|
60 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
61 |
+
negative_prompt_attention_mask: Optional[torch.Tensor] = None,
|
62 |
+
output_type: Optional[str] = "pil",
|
63 |
+
return_dict: bool = True,
|
64 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
65 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
66 |
+
max_sequence_length: int = 512,
|
67 |
+
) -> Union[SanaPipelineOutput, Tuple]:
|
68 |
+
"""
|
69 |
+
Function invoked when calling the pipeline for generation.
|
70 |
+
|
71 |
+
Args:
|
72 |
+
prompt (`str` or `List[str]`, *optional*):
|
73 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
74 |
+
instead.
|
75 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
76 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
77 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
78 |
+
less than `1`).
|
79 |
+
num_inference_steps (`int`, *optional*, defaults to 20):
|
80 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
81 |
+
expense of slower inference.
|
82 |
+
timesteps (`List[int]`, *optional*):
|
83 |
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
84 |
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
85 |
+
passed will be used. Must be in descending order.
|
86 |
+
sigmas (`List[float]`, *optional*):
|
87 |
+
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
88 |
+
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
89 |
+
will be used.
|
90 |
+
guidance_scale (`float`, *optional*, defaults to 4.5):
|
91 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
92 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
93 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
94 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
95 |
+
usually at the expense of lower image quality.
|
96 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
97 |
+
The number of images to generate per prompt.
|
98 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size):
|
99 |
+
The height in pixels of the generated image.
|
100 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size):
|
101 |
+
The width in pixels of the generated image.
|
102 |
+
eta (`float`, *optional*, defaults to 0.0):
|
103 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
104 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
105 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
106 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
107 |
+
to make generation deterministic.
|
108 |
+
latents (`torch.Tensor`, *optional*):
|
109 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
110 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
111 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
112 |
+
prompt_embeds (`torch.Tensor`, *optional*):
|
113 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
114 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
115 |
+
prompt_attention_mask (`torch.Tensor`, *optional*): Pre-generated attention mask for text embeddings.
|
116 |
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
117 |
+
Pre-generated negative text embeddings. For PixArt-Sigma this negative prompt should be "". If not
|
118 |
+
provided, negative_prompt_embeds will be generated from `negative_prompt` input argument.
|
119 |
+
negative_prompt_attention_mask (`torch.Tensor`, *optional*):
|
120 |
+
Pre-generated attention mask for negative text embeddings.
|
121 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
122 |
+
The output format of the generate image. Choose between
|
123 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
124 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
125 |
+
Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
|
126 |
+
callback_on_step_end (`Callable`, *optional*):
|
127 |
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
128 |
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
129 |
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
130 |
+
`callback_on_step_end_tensor_inputs`.
|
131 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
132 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
133 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
134 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
135 |
+
max_sequence_length (`int` defaults to `512`):
|
136 |
+
Maximum sequence length to use with the `prompt`.
|
137 |
+
|
138 |
+
Examples:
|
139 |
+
|
140 |
+
Returns:
|
141 |
+
[`~pipelines.sana.pipeline_output.SanaPipelineOutput`] or `tuple`:
|
142 |
+
If `return_dict` is `True`, [`~pipelines.sana.pipeline_output.SanaPipelineOutput`] is returned,
|
143 |
+
otherwise a `tuple` is returned where the first element is a list with the generated images
|
144 |
+
"""
|
145 |
+
|
146 |
+
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
147 |
+
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
148 |
+
|
149 |
+
# 1. Check inputs. Raise error if not correct
|
150 |
+
self.check_inputs(
|
151 |
+
prompt,
|
152 |
+
height,
|
153 |
+
width,
|
154 |
+
callback_on_step_end_tensor_inputs,
|
155 |
+
negative_prompt,
|
156 |
+
prompt_embeds,
|
157 |
+
negative_prompt_embeds,
|
158 |
+
prompt_attention_mask,
|
159 |
+
negative_prompt_attention_mask,
|
160 |
+
)
|
161 |
+
|
162 |
+
self._guidance_scale = guidance_scale
|
163 |
+
self._interrupt = False
|
164 |
+
|
165 |
+
# 2. Default height and width to transformer
|
166 |
+
if prompt is not None and isinstance(prompt, str):
|
167 |
+
batch_size = 1
|
168 |
+
elif prompt is not None and isinstance(prompt, list):
|
169 |
+
batch_size = len(prompt)
|
170 |
+
else:
|
171 |
+
batch_size = prompt_embeds.shape[0]
|
172 |
+
|
173 |
+
device = self._execution_device
|
174 |
+
|
175 |
+
# 3. Encode input prompt
|
176 |
+
(
|
177 |
+
prompt_embeds,
|
178 |
+
prompt_attention_mask,
|
179 |
+
negative_prompt_embeds,
|
180 |
+
negative_prompt_attention_mask,
|
181 |
+
) = self.encode_prompt(
|
182 |
+
prompt,
|
183 |
+
self.do_classifier_free_guidance,
|
184 |
+
negative_prompt=negative_prompt,
|
185 |
+
num_images_per_prompt=num_images_per_prompt,
|
186 |
+
device=device,
|
187 |
+
prompt_embeds=prompt_embeds,
|
188 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
189 |
+
prompt_attention_mask=prompt_attention_mask,
|
190 |
+
negative_prompt_attention_mask=negative_prompt_attention_mask,
|
191 |
+
max_sequence_length=max_sequence_length,
|
192 |
+
)
|
193 |
+
if self.do_classifier_free_guidance:
|
194 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
195 |
+
prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0)
|
196 |
+
|
197 |
+
# 4. Prepare timesteps
|
198 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
199 |
+
self.scheduler, num_inference_steps, device, timesteps, sigmas
|
200 |
+
)
|
201 |
+
|
202 |
+
# 5. Prepare latents.
|
203 |
+
latent_channels = self.transformer.config.in_channels
|
204 |
+
latents = self.prepare_latents(
|
205 |
+
batch_size * num_images_per_prompt,
|
206 |
+
latent_channels,
|
207 |
+
height,
|
208 |
+
width,
|
209 |
+
torch.float32,
|
210 |
+
device,
|
211 |
+
generator,
|
212 |
+
latents,
|
213 |
+
)
|
214 |
+
|
215 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
216 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
217 |
+
|
218 |
+
# 7. Denoising loop
|
219 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
220 |
+
self._num_timesteps = len(timesteps)
|
221 |
+
|
222 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
223 |
+
for i, t in enumerate(timesteps):
|
224 |
+
if self.interrupt:
|
225 |
+
continue
|
226 |
+
|
227 |
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
228 |
+
latent_model_input = latent_model_input.to(prompt_embeds.dtype)
|
229 |
+
|
230 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
231 |
+
timestep = t.expand(latent_model_input.shape[0]).to(latents.dtype)
|
232 |
+
|
233 |
+
# predict noise model_output
|
234 |
+
noise_pred = self.transformer(
|
235 |
+
latent_model_input,
|
236 |
+
encoder_hidden_states=prompt_embeds,
|
237 |
+
encoder_attention_mask=prompt_attention_mask,
|
238 |
+
timestep=timestep,
|
239 |
+
return_dict=False,
|
240 |
+
)[0]
|
241 |
+
noise_pred = noise_pred.float()
|
242 |
+
|
243 |
+
# perform guidance
|
244 |
+
if self.do_classifier_free_guidance:
|
245 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
246 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
247 |
+
|
248 |
+
# learned sigma
|
249 |
+
if self.transformer.config.out_channels // 2 == latent_channels:
|
250 |
+
noise_pred = noise_pred.chunk(2, dim=1)[0]
|
251 |
+
else:
|
252 |
+
noise_pred = noise_pred
|
253 |
+
|
254 |
+
# compute previous image: x_t -> x_t-1
|
255 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
256 |
+
|
257 |
+
if callback_on_step_end is not None:
|
258 |
+
callback_kwargs = {}
|
259 |
+
for k in callback_on_step_end_tensor_inputs:
|
260 |
+
callback_kwargs[k] = locals()[k]
|
261 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
262 |
+
|
263 |
+
latents = callback_outputs.pop("latents", latents)
|
264 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
265 |
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
266 |
+
|
267 |
+
# call the callback, if provided
|
268 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
269 |
+
progress_bar.update()
|
270 |
+
|
271 |
+
if output_type == "latent":
|
272 |
+
image = latents
|
273 |
+
else:
|
274 |
+
latents = latents.to(self.vae.dtype)
|
275 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
276 |
+
if use_resolution_binning:
|
277 |
+
image = self.image_processor.resize_and_crop_tensor(image, orig_width, orig_height)
|
278 |
+
|
279 |
+
if not output_type == "latent":
|
280 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
281 |
+
|
282 |
+
# Offload all models
|
283 |
+
self.maybe_free_model_hooks()
|
284 |
+
|
285 |
+
if not return_dict:
|
286 |
+
return (image,)
|
287 |
+
|
288 |
+
return SanaPipelineOutput(images=image)
|
Untitled.ipynb
CHANGED
@@ -2,131 +2,26 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"id": "dca3239c-17d6-4284-a2cf-83237a55a7df",
|
7 |
"metadata": {},
|
8 |
"outputs": [
|
9 |
{
|
10 |
-
"
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
"
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
"application/vnd.jupyter.widget-view+json": {
|
26 |
-
"model_id": "07b4b0a81f9845afb279935eabfd0777",
|
27 |
-
"version_major": 2,
|
28 |
-
"version_minor": 0
|
29 |
-
},
|
30 |
-
"text/plain": [
|
31 |
-
"Fetching 11 files: 0%| | 0/11 [00:00<?, ?it/s]"
|
32 |
-
]
|
33 |
-
},
|
34 |
-
"metadata": {},
|
35 |
-
"output_type": "display_data"
|
36 |
-
},
|
37 |
-
{
|
38 |
-
"data": {
|
39 |
-
"application/vnd.jupyter.widget-view+json": {
|
40 |
-
"model_id": "949f157d97d84f1281e3bac2d409f6c8",
|
41 |
-
"version_major": 2,
|
42 |
-
"version_minor": 0
|
43 |
-
},
|
44 |
-
"text/plain": [
|
45 |
-
"text_encoder/config.json: 0%| | 0.00/703 [00:00<?, ?B/s]"
|
46 |
-
]
|
47 |
-
},
|
48 |
-
"metadata": {},
|
49 |
-
"output_type": "display_data"
|
50 |
-
},
|
51 |
-
{
|
52 |
-
"data": {
|
53 |
-
"application/vnd.jupyter.widget-view+json": {
|
54 |
-
"model_id": "581b49cdca934d7cafb351a39b035318",
|
55 |
-
"version_major": 2,
|
56 |
-
"version_minor": 0
|
57 |
-
},
|
58 |
-
"text/plain": [
|
59 |
-
"model.fp16.safetensors: 0%| | 0.00/2.24G [00:00<?, ?B/s]"
|
60 |
-
]
|
61 |
-
},
|
62 |
-
"metadata": {},
|
63 |
-
"output_type": "display_data"
|
64 |
-
},
|
65 |
-
{
|
66 |
-
"data": {
|
67 |
-
"application/vnd.jupyter.widget-view+json": {
|
68 |
-
"model_id": "54cd4a2171c14f52bf196476baad63b5",
|
69 |
-
"version_major": 2,
|
70 |
-
"version_minor": 0
|
71 |
-
},
|
72 |
-
"text/plain": [
|
73 |
-
"diffusion_pytorch_model.fp16.safetensors: 0%| | 0.00/3.20G [00:00<?, ?B/s]"
|
74 |
-
]
|
75 |
-
},
|
76 |
-
"metadata": {},
|
77 |
-
"output_type": "display_data"
|
78 |
-
},
|
79 |
-
{
|
80 |
-
"name": "stderr",
|
81 |
-
"output_type": "stream",
|
82 |
-
"text": [
|
83 |
-
"Keyword arguments {'trust_remote_code': True} are not expected by SanaPipeline and will be ignored.\n"
|
84 |
-
]
|
85 |
-
},
|
86 |
-
{
|
87 |
-
"data": {
|
88 |
-
"application/vnd.jupyter.widget-view+json": {
|
89 |
-
"model_id": "e13097eff89242839a05b60123f73ca3",
|
90 |
-
"version_major": 2,
|
91 |
-
"version_minor": 0
|
92 |
-
},
|
93 |
-
"text/plain": [
|
94 |
-
"Loading pipeline components...: 0%| | 0/5 [00:00<?, ?it/s]"
|
95 |
-
]
|
96 |
-
},
|
97 |
-
"metadata": {},
|
98 |
-
"output_type": "display_data"
|
99 |
-
},
|
100 |
-
{
|
101 |
-
"name": "stdout",
|
102 |
-
"output_type": "stream",
|
103 |
-
"text": [
|
104 |
-
"SanaPipeline {\n",
|
105 |
-
" \"_class_name\": \"SanaPipeline\",\n",
|
106 |
-
" \"_diffusers_version\": \"0.32.0.dev0\",\n",
|
107 |
-
" \"_name_or_path\": \"AiArtLab/waifu-2b\",\n",
|
108 |
-
" \"scheduler\": [\n",
|
109 |
-
" \"diffusers\",\n",
|
110 |
-
" \"FlowMatchEulerDiscreteScheduler\"\n",
|
111 |
-
" ],\n",
|
112 |
-
" \"text_encoder\": [\n",
|
113 |
-
" \"transformers\",\n",
|
114 |
-
" \"XLMRobertaModel\"\n",
|
115 |
-
" ],\n",
|
116 |
-
" \"tokenizer\": [\n",
|
117 |
-
" \"transformers\",\n",
|
118 |
-
" \"XLMRobertaTokenizerFast\"\n",
|
119 |
-
" ],\n",
|
120 |
-
" \"transformer\": [\n",
|
121 |
-
" \"diffusers\",\n",
|
122 |
-
" \"SanaTransformer2DModel\"\n",
|
123 |
-
" ],\n",
|
124 |
-
" \"vae\": [\n",
|
125 |
-
" \"diffusers\",\n",
|
126 |
-
" \"AutoencoderKL\"\n",
|
127 |
-
" ]\n",
|
128 |
-
"}\n",
|
129 |
-
"\n"
|
130 |
]
|
131 |
}
|
132 |
],
|
@@ -134,7 +29,7 @@
|
|
134 |
"import torch\n",
|
135 |
"from diffusers import DiffusionPipeline\n",
|
136 |
"\n",
|
137 |
-
"pipe_id = \"
|
138 |
"variant = \"fp16\"\n",
|
139 |
"pipe = DiffusionPipeline.from_pretrained(\n",
|
140 |
" pipe_id, \n",
|
@@ -151,7 +46,33 @@
|
|
151 |
"id": "b6ebc579-0eb2-4828-89d5-b40f6d5e758e",
|
152 |
"metadata": {},
|
153 |
"outputs": [],
|
154 |
-
"source": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
}
|
156 |
],
|
157 |
"metadata": {
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 13,
|
6 |
"id": "dca3239c-17d6-4284-a2cf-83237a55a7df",
|
7 |
"metadata": {},
|
8 |
"outputs": [
|
9 |
{
|
10 |
+
"ename": "AttributeError",
|
11 |
+
"evalue": "module 'diffusers_modules.local.pipeline_waifu' has no attribute 'WaifuPipeline'",
|
12 |
+
"output_type": "error",
|
13 |
+
"traceback": [
|
14 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
15 |
+
"\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
|
16 |
+
"Cell \u001b[0;32mIn[13], line 6\u001b[0m\n\u001b[1;32m 4\u001b[0m pipe_id \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m/home/recoilme/models/waifu-2b\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 5\u001b[0m variant \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mfp16\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m----> 6\u001b[0m pipe \u001b[38;5;241m=\u001b[39m \u001b[43mDiffusionPipeline\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_pretrained\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 7\u001b[0m \u001b[43m \u001b[49m\u001b[43mpipe_id\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\n\u001b[1;32m 8\u001b[0m \u001b[43m \u001b[49m\u001b[43mvariant\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mvariant\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 9\u001b[0m \u001b[43m \u001b[49m\u001b[43mtrust_remote_code\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\n\u001b[1;32m 10\u001b[0m \u001b[43m)\u001b[49m\n\u001b[1;32m 11\u001b[0m \u001b[38;5;28mprint\u001b[39m(pipe)\n\u001b[1;32m 12\u001b[0m \u001b[38;5;66;03m#pipe_sd.to(\"cuda\")\u001b[39;00m\n",
|
17 |
+
"File \u001b[0;32m~/.local/lib/python3.11/site-packages/huggingface_hub/utils/_validators.py:114\u001b[0m, in \u001b[0;36mvalidate_hf_hub_args.<locals>._inner_fn\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 111\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m check_use_auth_token:\n\u001b[1;32m 112\u001b[0m kwargs \u001b[38;5;241m=\u001b[39m smoothly_deprecate_use_auth_token(fn_name\u001b[38;5;241m=\u001b[39mfn\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m, has_token\u001b[38;5;241m=\u001b[39mhas_token, kwargs\u001b[38;5;241m=\u001b[39mkwargs)\n\u001b[0;32m--> 114\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
|
18 |
+
"File \u001b[0;32m~/.local/lib/python3.11/site-packages/diffusers/pipelines/pipeline_utils.py:785\u001b[0m, in \u001b[0;36mDiffusionPipeline.from_pretrained\u001b[0;34m(cls, pretrained_model_name_or_path, **kwargs)\u001b[0m\n\u001b[1;32m 780\u001b[0m \u001b[38;5;66;03m# 3. Load the pipeline class, if using custom module then load it from the hub\u001b[39;00m\n\u001b[1;32m 781\u001b[0m \u001b[38;5;66;03m# if we load from explicit class, let's use it\u001b[39;00m\n\u001b[1;32m 782\u001b[0m custom_pipeline, custom_class_name \u001b[38;5;241m=\u001b[39m _resolve_custom_pipeline_and_cls(\n\u001b[1;32m 783\u001b[0m folder\u001b[38;5;241m=\u001b[39mcached_folder, config\u001b[38;5;241m=\u001b[39mconfig_dict, custom_pipeline\u001b[38;5;241m=\u001b[39mcustom_pipeline\n\u001b[1;32m 784\u001b[0m )\n\u001b[0;32m--> 785\u001b[0m pipeline_class \u001b[38;5;241m=\u001b[39m \u001b[43m_get_pipeline_class\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 786\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mcls\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 787\u001b[0m \u001b[43m \u001b[49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig_dict\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 788\u001b[0m \u001b[43m \u001b[49m\u001b[43mload_connected_pipeline\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mload_connected_pipeline\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 789\u001b[0m \u001b[43m \u001b[49m\u001b[43mcustom_pipeline\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcustom_pipeline\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 790\u001b[0m \u001b[43m \u001b[49m\u001b[43mclass_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcustom_class_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 791\u001b[0m \u001b[43m \u001b[49m\u001b[43mcache_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcache_dir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 792\u001b[0m \u001b[43m \u001b[49m\u001b[43mrevision\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcustom_revision\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 793\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 795\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m device_map \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m pipeline_class\u001b[38;5;241m.\u001b[39m_load_connected_pipes:\n\u001b[1;32m 796\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mNotImplementedError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m`device_map` is not yet supported for connected pipelines.\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
|
19 |
+
"File \u001b[0;32m~/.local/lib/python3.11/site-packages/diffusers/pipelines/pipeline_loading_utils.py:370\u001b[0m, in \u001b[0;36m_get_pipeline_class\u001b[0;34m(class_obj, config, load_connected_pipeline, custom_pipeline, repo_id, hub_revision, class_name, cache_dir, revision)\u001b[0m\n\u001b[1;32m 358\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_get_pipeline_class\u001b[39m(\n\u001b[1;32m 359\u001b[0m class_obj,\n\u001b[1;32m 360\u001b[0m config\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 367\u001b[0m revision\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 368\u001b[0m ):\n\u001b[1;32m 369\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m custom_pipeline \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m--> 370\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_get_custom_pipeline_class\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 371\u001b[0m \u001b[43m \u001b[49m\u001b[43mcustom_pipeline\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 372\u001b[0m \u001b[43m \u001b[49m\u001b[43mrepo_id\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrepo_id\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 373\u001b[0m \u001b[43m \u001b[49m\u001b[43mhub_revision\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mhub_revision\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 374\u001b[0m \u001b[43m \u001b[49m\u001b[43mclass_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mclass_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 375\u001b[0m \u001b[43m \u001b[49m\u001b[43mcache_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcache_dir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 376\u001b[0m \u001b[43m \u001b[49m\u001b[43mrevision\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrevision\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 377\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 379\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m class_obj\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m \u001b[38;5;241m!=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mDiffusionPipeline\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[1;32m 380\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m class_obj\n",
|
20 |
+
"File \u001b[0;32m~/.local/lib/python3.11/site-packages/diffusers/pipelines/pipeline_loading_utils.py:349\u001b[0m, in \u001b[0;36m_get_custom_pipeline_class\u001b[0;34m(custom_pipeline, repo_id, hub_revision, class_name, cache_dir, revision)\u001b[0m\n\u001b[1;32m 344\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m repo_id \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m hub_revision \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 345\u001b[0m \u001b[38;5;66;03m# if we load the pipeline code from the Hub\u001b[39;00m\n\u001b[1;32m 346\u001b[0m \u001b[38;5;66;03m# make sure to overwrite the `revision`\u001b[39;00m\n\u001b[1;32m 347\u001b[0m revision \u001b[38;5;241m=\u001b[39m hub_revision\n\u001b[0;32m--> 349\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mget_class_from_dynamic_module\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 350\u001b[0m \u001b[43m \u001b[49m\u001b[43mcustom_pipeline\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 351\u001b[0m \u001b[43m \u001b[49m\u001b[43mmodule_file\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfile_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 352\u001b[0m \u001b[43m \u001b[49m\u001b[43mclass_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mclass_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 353\u001b[0m \u001b[43m \u001b[49m\u001b[43mcache_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcache_dir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 354\u001b[0m \u001b[43m \u001b[49m\u001b[43mrevision\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrevision\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 355\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
|
21 |
+
"File \u001b[0;32m~/.local/lib/python3.11/site-packages/huggingface_hub/utils/_validators.py:114\u001b[0m, in \u001b[0;36mvalidate_hf_hub_args.<locals>._inner_fn\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 111\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m check_use_auth_token:\n\u001b[1;32m 112\u001b[0m kwargs \u001b[38;5;241m=\u001b[39m smoothly_deprecate_use_auth_token(fn_name\u001b[38;5;241m=\u001b[39mfn\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m, has_token\u001b[38;5;241m=\u001b[39mhas_token, kwargs\u001b[38;5;241m=\u001b[39mkwargs)\n\u001b[0;32m--> 114\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
|
22 |
+
"File \u001b[0;32m~/.local/lib/python3.11/site-packages/diffusers/utils/dynamic_modules_utils.py:457\u001b[0m, in \u001b[0;36mget_class_from_dynamic_module\u001b[0;34m(pretrained_model_name_or_path, module_file, class_name, cache_dir, force_download, proxies, token, revision, local_files_only, **kwargs)\u001b[0m\n\u001b[1;32m 446\u001b[0m \u001b[38;5;66;03m# And lastly we get the class inside our newly created module\u001b[39;00m\n\u001b[1;32m 447\u001b[0m final_module \u001b[38;5;241m=\u001b[39m get_cached_module_file(\n\u001b[1;32m 448\u001b[0m pretrained_model_name_or_path,\n\u001b[1;32m 449\u001b[0m module_file,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 455\u001b[0m local_files_only\u001b[38;5;241m=\u001b[39mlocal_files_only,\n\u001b[1;32m 456\u001b[0m )\n\u001b[0;32m--> 457\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mget_class_in_module\u001b[49m\u001b[43m(\u001b[49m\u001b[43mclass_name\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfinal_module\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mreplace\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m.py\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n",
|
23 |
+
"File \u001b[0;32m~/.local/lib/python3.11/site-packages/diffusers/utils/dynamic_modules_utils.py:166\u001b[0m, in \u001b[0;36mget_class_in_module\u001b[0;34m(class_name, module_path)\u001b[0m\n\u001b[1;32m 164\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m class_name \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 165\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m find_pipeline_class(module)\n\u001b[0;32m--> 166\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mgetattr\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mmodule\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mclass_name\u001b[49m\u001b[43m)\u001b[49m\n",
|
24 |
+
"\u001b[0;31mAttributeError\u001b[0m: module 'diffusers_modules.local.pipeline_waifu' has no attribute 'WaifuPipeline'"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
]
|
26 |
}
|
27 |
],
|
|
|
29 |
"import torch\n",
|
30 |
"from diffusers import DiffusionPipeline\n",
|
31 |
"\n",
|
32 |
+
"pipe_id = \"/home/recoilme/models/waifu-2b\"\n",
|
33 |
"variant = \"fp16\"\n",
|
34 |
"pipe = DiffusionPipeline.from_pretrained(\n",
|
35 |
" pipe_id, \n",
|
|
|
46 |
"id": "b6ebc579-0eb2-4828-89d5-b40f6d5e758e",
|
47 |
"metadata": {},
|
48 |
"outputs": [],
|
49 |
+
"source": [
|
50 |
+
"SanaPipeline {\n",
|
51 |
+
" \"_class_name\": \"SanaPipeline\",\n",
|
52 |
+
" \"_diffusers_version\": \"0.32.0.dev0\",\n",
|
53 |
+
" \"_name_or_path\": \"AiArtLab/waifu-2b\",\n",
|
54 |
+
" \"scheduler\": [\n",
|
55 |
+
" \"diffusers\",\n",
|
56 |
+
" \"FlowMatchEulerDiscreteScheduler\"\n",
|
57 |
+
" ],\n",
|
58 |
+
" \"text_encoder\": [\n",
|
59 |
+
" \"transformers\",\n",
|
60 |
+
" \"XLMRobertaModel\"\n",
|
61 |
+
" ],\n",
|
62 |
+
" \"tokenizer\": [\n",
|
63 |
+
" \"transformers\",\n",
|
64 |
+
" \"XLMRobertaTokenizerFast\"\n",
|
65 |
+
" ],\n",
|
66 |
+
" \"transformer\": [\n",
|
67 |
+
" \"diffusers\",\n",
|
68 |
+
" \"SanaTransformer2DModel\"\n",
|
69 |
+
" ],\n",
|
70 |
+
" \"vae\": [\n",
|
71 |
+
" \"diffusers\",\n",
|
72 |
+
" \"AutoencoderKL\"\n",
|
73 |
+
" ]\n",
|
74 |
+
"}\n"
|
75 |
+
]
|
76 |
}
|
77 |
],
|
78 |
"metadata": {
|
pipeline_waifu.py
CHANGED
@@ -1,4 +1,7 @@
|
|
1 |
import torch
|
|
|
|
|
|
|
2 |
# tokenizer
|
3 |
from transformers import XLMRobertaTokenizerFast
|
4 |
# text_encoder
|
@@ -10,6 +13,7 @@ from diffusers.models import AutoencoderKL
|
|
10 |
# Transformer
|
11 |
from diffusers import SanaTransformer2DModel
|
12 |
|
|
|
13 |
class WaifuPipeline(DiffusionPipeline):
|
14 |
r"""
|
15 |
Pipeline for text-to-image generation using [waifu](https://github.com/recoilme/waifu).
|
|
|
1 |
import torch
|
2 |
+
from diffusers import DiffusionPipeline
|
3 |
+
|
4 |
+
# waifu
|
5 |
# tokenizer
|
6 |
from transformers import XLMRobertaTokenizerFast
|
7 |
# text_encoder
|
|
|
13 |
# Transformer
|
14 |
from diffusers import SanaTransformer2DModel
|
15 |
|
16 |
+
|
17 |
class WaifuPipeline(DiffusionPipeline):
|
18 |
r"""
|
19 |
Pipeline for text-to-image generation using [waifu](https://github.com/recoilme/waifu).
|