recoilme commited on
Commit
17fa54c
·
verified ·
1 Parent(s): 3d54a9f

Upload folder using huggingface_hub

Browse files
.ipynb_checkpoints/Untitled-checkpoint.ipynb ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 13,
6
+ "id": "dca3239c-17d6-4284-a2cf-83237a55a7df",
7
+ "metadata": {},
8
+ "outputs": [
9
+ {
10
+ "ename": "AttributeError",
11
+ "evalue": "module 'diffusers_modules.local.pipeline_waifu' has no attribute 'WaifuPipeline'",
12
+ "output_type": "error",
13
+ "traceback": [
14
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
15
+ "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
16
+ "Cell \u001b[0;32mIn[13], line 6\u001b[0m\n\u001b[1;32m 4\u001b[0m pipe_id \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m/home/recoilme/models/waifu-2b\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 5\u001b[0m variant \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mfp16\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m----> 6\u001b[0m pipe \u001b[38;5;241m=\u001b[39m \u001b[43mDiffusionPipeline\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_pretrained\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 7\u001b[0m \u001b[43m \u001b[49m\u001b[43mpipe_id\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\n\u001b[1;32m 8\u001b[0m \u001b[43m \u001b[49m\u001b[43mvariant\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mvariant\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 9\u001b[0m \u001b[43m \u001b[49m\u001b[43mtrust_remote_code\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\n\u001b[1;32m 10\u001b[0m \u001b[43m)\u001b[49m\n\u001b[1;32m 11\u001b[0m \u001b[38;5;28mprint\u001b[39m(pipe)\n\u001b[1;32m 12\u001b[0m \u001b[38;5;66;03m#pipe_sd.to(\"cuda\")\u001b[39;00m\n",
17
+ "File \u001b[0;32m~/.local/lib/python3.11/site-packages/huggingface_hub/utils/_validators.py:114\u001b[0m, in \u001b[0;36mvalidate_hf_hub_args.<locals>._inner_fn\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 111\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m check_use_auth_token:\n\u001b[1;32m 112\u001b[0m kwargs \u001b[38;5;241m=\u001b[39m smoothly_deprecate_use_auth_token(fn_name\u001b[38;5;241m=\u001b[39mfn\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m, has_token\u001b[38;5;241m=\u001b[39mhas_token, kwargs\u001b[38;5;241m=\u001b[39mkwargs)\n\u001b[0;32m--> 114\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
18
+ "File \u001b[0;32m~/.local/lib/python3.11/site-packages/diffusers/pipelines/pipeline_utils.py:785\u001b[0m, in \u001b[0;36mDiffusionPipeline.from_pretrained\u001b[0;34m(cls, pretrained_model_name_or_path, **kwargs)\u001b[0m\n\u001b[1;32m 780\u001b[0m \u001b[38;5;66;03m# 3. Load the pipeline class, if using custom module then load it from the hub\u001b[39;00m\n\u001b[1;32m 781\u001b[0m \u001b[38;5;66;03m# if we load from explicit class, let's use it\u001b[39;00m\n\u001b[1;32m 782\u001b[0m custom_pipeline, custom_class_name \u001b[38;5;241m=\u001b[39m _resolve_custom_pipeline_and_cls(\n\u001b[1;32m 783\u001b[0m folder\u001b[38;5;241m=\u001b[39mcached_folder, config\u001b[38;5;241m=\u001b[39mconfig_dict, custom_pipeline\u001b[38;5;241m=\u001b[39mcustom_pipeline\n\u001b[1;32m 784\u001b[0m )\n\u001b[0;32m--> 785\u001b[0m pipeline_class \u001b[38;5;241m=\u001b[39m \u001b[43m_get_pipeline_class\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 786\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mcls\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 787\u001b[0m \u001b[43m \u001b[49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig_dict\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 788\u001b[0m \u001b[43m \u001b[49m\u001b[43mload_connected_pipeline\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mload_connected_pipeline\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 789\u001b[0m \u001b[43m \u001b[49m\u001b[43mcustom_pipeline\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcustom_pipeline\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 790\u001b[0m \u001b[43m \u001b[49m\u001b[43mclass_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcustom_class_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 791\u001b[0m \u001b[43m \u001b[49m\u001b[43mcache_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcache_dir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 792\u001b[0m \u001b[43m \u001b[49m\u001b[43mrevision\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcustom_revision\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 793\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 795\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m device_map \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m pipeline_class\u001b[38;5;241m.\u001b[39m_load_connected_pipes:\n\u001b[1;32m 796\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mNotImplementedError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m`device_map` is not yet supported for connected pipelines.\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
19
+ "File \u001b[0;32m~/.local/lib/python3.11/site-packages/diffusers/pipelines/pipeline_loading_utils.py:370\u001b[0m, in \u001b[0;36m_get_pipeline_class\u001b[0;34m(class_obj, config, load_connected_pipeline, custom_pipeline, repo_id, hub_revision, class_name, cache_dir, revision)\u001b[0m\n\u001b[1;32m 358\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_get_pipeline_class\u001b[39m(\n\u001b[1;32m 359\u001b[0m class_obj,\n\u001b[1;32m 360\u001b[0m config\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 367\u001b[0m revision\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 368\u001b[0m ):\n\u001b[1;32m 369\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m custom_pipeline \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m--> 370\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_get_custom_pipeline_class\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 371\u001b[0m \u001b[43m \u001b[49m\u001b[43mcustom_pipeline\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 372\u001b[0m \u001b[43m \u001b[49m\u001b[43mrepo_id\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrepo_id\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 373\u001b[0m \u001b[43m \u001b[49m\u001b[43mhub_revision\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mhub_revision\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 374\u001b[0m \u001b[43m \u001b[49m\u001b[43mclass_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mclass_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 375\u001b[0m \u001b[43m \u001b[49m\u001b[43mcache_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcache_dir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 376\u001b[0m \u001b[43m \u001b[49m\u001b[43mrevision\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrevision\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 377\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 379\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m class_obj\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m \u001b[38;5;241m!=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mDiffusionPipeline\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[1;32m 380\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m class_obj\n",
20
+ "File \u001b[0;32m~/.local/lib/python3.11/site-packages/diffusers/pipelines/pipeline_loading_utils.py:349\u001b[0m, in \u001b[0;36m_get_custom_pipeline_class\u001b[0;34m(custom_pipeline, repo_id, hub_revision, class_name, cache_dir, revision)\u001b[0m\n\u001b[1;32m 344\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m repo_id \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m hub_revision \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 345\u001b[0m \u001b[38;5;66;03m# if we load the pipeline code from the Hub\u001b[39;00m\n\u001b[1;32m 346\u001b[0m \u001b[38;5;66;03m# make sure to overwrite the `revision`\u001b[39;00m\n\u001b[1;32m 347\u001b[0m revision \u001b[38;5;241m=\u001b[39m hub_revision\n\u001b[0;32m--> 349\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mget_class_from_dynamic_module\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 350\u001b[0m \u001b[43m \u001b[49m\u001b[43mcustom_pipeline\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 351\u001b[0m \u001b[43m \u001b[49m\u001b[43mmodule_file\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfile_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 352\u001b[0m \u001b[43m \u001b[49m\u001b[43mclass_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mclass_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 353\u001b[0m \u001b[43m \u001b[49m\u001b[43mcache_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcache_dir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 354\u001b[0m \u001b[43m \u001b[49m\u001b[43mrevision\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrevision\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 355\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
21
+ "File \u001b[0;32m~/.local/lib/python3.11/site-packages/huggingface_hub/utils/_validators.py:114\u001b[0m, in \u001b[0;36mvalidate_hf_hub_args.<locals>._inner_fn\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 111\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m check_use_auth_token:\n\u001b[1;32m 112\u001b[0m kwargs \u001b[38;5;241m=\u001b[39m smoothly_deprecate_use_auth_token(fn_name\u001b[38;5;241m=\u001b[39mfn\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m, has_token\u001b[38;5;241m=\u001b[39mhas_token, kwargs\u001b[38;5;241m=\u001b[39mkwargs)\n\u001b[0;32m--> 114\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
22
+ "File \u001b[0;32m~/.local/lib/python3.11/site-packages/diffusers/utils/dynamic_modules_utils.py:457\u001b[0m, in \u001b[0;36mget_class_from_dynamic_module\u001b[0;34m(pretrained_model_name_or_path, module_file, class_name, cache_dir, force_download, proxies, token, revision, local_files_only, **kwargs)\u001b[0m\n\u001b[1;32m 446\u001b[0m \u001b[38;5;66;03m# And lastly we get the class inside our newly created module\u001b[39;00m\n\u001b[1;32m 447\u001b[0m final_module \u001b[38;5;241m=\u001b[39m get_cached_module_file(\n\u001b[1;32m 448\u001b[0m pretrained_model_name_or_path,\n\u001b[1;32m 449\u001b[0m module_file,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 455\u001b[0m local_files_only\u001b[38;5;241m=\u001b[39mlocal_files_only,\n\u001b[1;32m 456\u001b[0m )\n\u001b[0;32m--> 457\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mget_class_in_module\u001b[49m\u001b[43m(\u001b[49m\u001b[43mclass_name\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfinal_module\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mreplace\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m.py\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n",
23
+ "File \u001b[0;32m~/.local/lib/python3.11/site-packages/diffusers/utils/dynamic_modules_utils.py:166\u001b[0m, in \u001b[0;36mget_class_in_module\u001b[0;34m(class_name, module_path)\u001b[0m\n\u001b[1;32m 164\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m class_name \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 165\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m find_pipeline_class(module)\n\u001b[0;32m--> 166\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mgetattr\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mmodule\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mclass_name\u001b[49m\u001b[43m)\u001b[49m\n",
24
+ "\u001b[0;31mAttributeError\u001b[0m: module 'diffusers_modules.local.pipeline_waifu' has no attribute 'WaifuPipeline'"
25
+ ]
26
+ }
27
+ ],
28
+ "source": [
29
+ "import torch\n",
30
+ "from diffusers import DiffusionPipeline\n",
31
+ "\n",
32
+ "pipe_id = \"/home/recoilme/models/waifu-2b\"\n",
33
+ "variant = \"fp16\"\n",
34
+ "pipe = DiffusionPipeline.from_pretrained(\n",
35
+ " pipe_id, \n",
36
+ " variant=variant,\n",
37
+ " trust_remote_code=True\n",
38
+ ")\n",
39
+ "print(pipe)\n",
40
+ "#pipe_sd.to(\"cuda\")"
41
+ ]
42
+ },
43
+ {
44
+ "cell_type": "code",
45
+ "execution_count": null,
46
+ "id": "b6ebc579-0eb2-4828-89d5-b40f6d5e758e",
47
+ "metadata": {},
48
+ "outputs": [],
49
+ "source": [
50
+ "SanaPipeline {\n",
51
+ " \"_class_name\": \"SanaPipeline\",\n",
52
+ " \"_diffusers_version\": \"0.32.0.dev0\",\n",
53
+ " \"_name_or_path\": \"AiArtLab/waifu-2b\",\n",
54
+ " \"scheduler\": [\n",
55
+ " \"diffusers\",\n",
56
+ " \"FlowMatchEulerDiscreteScheduler\"\n",
57
+ " ],\n",
58
+ " \"text_encoder\": [\n",
59
+ " \"transformers\",\n",
60
+ " \"XLMRobertaModel\"\n",
61
+ " ],\n",
62
+ " \"tokenizer\": [\n",
63
+ " \"transformers\",\n",
64
+ " \"XLMRobertaTokenizerFast\"\n",
65
+ " ],\n",
66
+ " \"transformer\": [\n",
67
+ " \"diffusers\",\n",
68
+ " \"SanaTransformer2DModel\"\n",
69
+ " ],\n",
70
+ " \"vae\": [\n",
71
+ " \"diffusers\",\n",
72
+ " \"AutoencoderKL\"\n",
73
+ " ]\n",
74
+ "}\n"
75
+ ]
76
+ }
77
+ ],
78
+ "metadata": {
79
+ "kernelspec": {
80
+ "display_name": "Python 3 (ipykernel)",
81
+ "language": "python",
82
+ "name": "python3"
83
+ },
84
+ "language_info": {
85
+ "codemirror_mode": {
86
+ "name": "ipython",
87
+ "version": 3
88
+ },
89
+ "file_extension": ".py",
90
+ "mimetype": "text/x-python",
91
+ "name": "python",
92
+ "nbconvert_exporter": "python",
93
+ "pygments_lexer": "ipython3",
94
+ "version": "3.11.6"
95
+ }
96
+ },
97
+ "nbformat": 4,
98
+ "nbformat_minor": 5
99
+ }
.ipynb_checkpoints/pipeline_waifu-checkpoint.py ADDED
@@ -0,0 +1,288 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from diffusers import DiffusionPipeline
3
+
4
+ # waifu
5
+ # tokenizer
6
+ from transformers import XLMRobertaTokenizerFast
7
+ # text_encoder
8
+ from transformers import XLMRobertaModel
9
+ # scheduler
10
+ from diffusers import FlowMatchEulerDiscreteScheduler
11
+ # VAE
12
+ from diffusers.models import AutoencoderKL
13
+ # Transformer
14
+ from diffusers import SanaTransformer2DModel
15
+
16
+
17
+ class WaifuPipeline(DiffusionPipeline):
18
+ r"""
19
+ Pipeline for text-to-image generation using [waifu](https://github.com/recoilme/waifu).
20
+ """
21
+
22
+ model_cpu_offload_seq = "text_encoder->transformer->vae"
23
+ _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
24
+
25
+ def __init__(
26
+ self,
27
+ tokenizer: XLMRobertaTokenizerFast,
28
+ text_encoder: XLMRobertaModel,
29
+ vae: AutoencoderKL,
30
+ transformer: SanaTransformer2DModel,
31
+ scheduler: FlowMatchEulerDiscreteScheduler,
32
+ ):
33
+ super().__init__()
34
+
35
+ self.register_modules(
36
+ tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler
37
+ )
38
+
39
+ self.vae_scale_factor = 8
40
+ self.image_processor = PixArtImageProcessor(vae_scale_factor=self.vae_scale_factor)
41
+
42
+ @torch.no_grad()
43
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
44
+ def __call__(
45
+ self,
46
+ prompt: Union[str, List[str]] = None,
47
+ negative_prompt: str = "",
48
+ num_inference_steps: int = 20,
49
+ timesteps: List[int] = None,
50
+ sigmas: List[float] = None,
51
+ guidance_scale: float = 4.5,
52
+ num_images_per_prompt: Optional[int] = 1,
53
+ height: int = 512,
54
+ width: int = 512,
55
+ eta: float = 0.0,
56
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
57
+ latents: Optional[torch.Tensor] = None,
58
+ prompt_embeds: Optional[torch.Tensor] = None,
59
+ prompt_attention_mask: Optional[torch.Tensor] = None,
60
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
61
+ negative_prompt_attention_mask: Optional[torch.Tensor] = None,
62
+ output_type: Optional[str] = "pil",
63
+ return_dict: bool = True,
64
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
65
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
66
+ max_sequence_length: int = 512,
67
+ ) -> Union[SanaPipelineOutput, Tuple]:
68
+ """
69
+ Function invoked when calling the pipeline for generation.
70
+
71
+ Args:
72
+ prompt (`str` or `List[str]`, *optional*):
73
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
74
+ instead.
75
+ negative_prompt (`str` or `List[str]`, *optional*):
76
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
77
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
78
+ less than `1`).
79
+ num_inference_steps (`int`, *optional*, defaults to 20):
80
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
81
+ expense of slower inference.
82
+ timesteps (`List[int]`, *optional*):
83
+ Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
84
+ in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
85
+ passed will be used. Must be in descending order.
86
+ sigmas (`List[float]`, *optional*):
87
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
88
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
89
+ will be used.
90
+ guidance_scale (`float`, *optional*, defaults to 4.5):
91
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
92
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
93
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
94
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
95
+ usually at the expense of lower image quality.
96
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
97
+ The number of images to generate per prompt.
98
+ height (`int`, *optional*, defaults to self.unet.config.sample_size):
99
+ The height in pixels of the generated image.
100
+ width (`int`, *optional*, defaults to self.unet.config.sample_size):
101
+ The width in pixels of the generated image.
102
+ eta (`float`, *optional*, defaults to 0.0):
103
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
104
+ [`schedulers.DDIMScheduler`], will be ignored for others.
105
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
106
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
107
+ to make generation deterministic.
108
+ latents (`torch.Tensor`, *optional*):
109
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
110
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
111
+ tensor will ge generated by sampling using the supplied random `generator`.
112
+ prompt_embeds (`torch.Tensor`, *optional*):
113
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
114
+ provided, text embeddings will be generated from `prompt` input argument.
115
+ prompt_attention_mask (`torch.Tensor`, *optional*): Pre-generated attention mask for text embeddings.
116
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
117
+ Pre-generated negative text embeddings. For PixArt-Sigma this negative prompt should be "". If not
118
+ provided, negative_prompt_embeds will be generated from `negative_prompt` input argument.
119
+ negative_prompt_attention_mask (`torch.Tensor`, *optional*):
120
+ Pre-generated attention mask for negative text embeddings.
121
+ output_type (`str`, *optional*, defaults to `"pil"`):
122
+ The output format of the generate image. Choose between
123
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
124
+ return_dict (`bool`, *optional*, defaults to `True`):
125
+ Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
126
+ callback_on_step_end (`Callable`, *optional*):
127
+ A function that calls at the end of each denoising steps during the inference. The function is called
128
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
129
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
130
+ `callback_on_step_end_tensor_inputs`.
131
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
132
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
133
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
134
+ `._callback_tensor_inputs` attribute of your pipeline class.
135
+ max_sequence_length (`int` defaults to `512`):
136
+ Maximum sequence length to use with the `prompt`.
137
+
138
+ Examples:
139
+
140
+ Returns:
141
+ [`~pipelines.sana.pipeline_output.SanaPipelineOutput`] or `tuple`:
142
+ If `return_dict` is `True`, [`~pipelines.sana.pipeline_output.SanaPipelineOutput`] is returned,
143
+ otherwise a `tuple` is returned where the first element is a list with the generated images
144
+ """
145
+
146
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
147
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
148
+
149
+ # 1. Check inputs. Raise error if not correct
150
+ self.check_inputs(
151
+ prompt,
152
+ height,
153
+ width,
154
+ callback_on_step_end_tensor_inputs,
155
+ negative_prompt,
156
+ prompt_embeds,
157
+ negative_prompt_embeds,
158
+ prompt_attention_mask,
159
+ negative_prompt_attention_mask,
160
+ )
161
+
162
+ self._guidance_scale = guidance_scale
163
+ self._interrupt = False
164
+
165
+ # 2. Default height and width to transformer
166
+ if prompt is not None and isinstance(prompt, str):
167
+ batch_size = 1
168
+ elif prompt is not None and isinstance(prompt, list):
169
+ batch_size = len(prompt)
170
+ else:
171
+ batch_size = prompt_embeds.shape[0]
172
+
173
+ device = self._execution_device
174
+
175
+ # 3. Encode input prompt
176
+ (
177
+ prompt_embeds,
178
+ prompt_attention_mask,
179
+ negative_prompt_embeds,
180
+ negative_prompt_attention_mask,
181
+ ) = self.encode_prompt(
182
+ prompt,
183
+ self.do_classifier_free_guidance,
184
+ negative_prompt=negative_prompt,
185
+ num_images_per_prompt=num_images_per_prompt,
186
+ device=device,
187
+ prompt_embeds=prompt_embeds,
188
+ negative_prompt_embeds=negative_prompt_embeds,
189
+ prompt_attention_mask=prompt_attention_mask,
190
+ negative_prompt_attention_mask=negative_prompt_attention_mask,
191
+ max_sequence_length=max_sequence_length,
192
+ )
193
+ if self.do_classifier_free_guidance:
194
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
195
+ prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0)
196
+
197
+ # 4. Prepare timesteps
198
+ timesteps, num_inference_steps = retrieve_timesteps(
199
+ self.scheduler, num_inference_steps, device, timesteps, sigmas
200
+ )
201
+
202
+ # 5. Prepare latents.
203
+ latent_channels = self.transformer.config.in_channels
204
+ latents = self.prepare_latents(
205
+ batch_size * num_images_per_prompt,
206
+ latent_channels,
207
+ height,
208
+ width,
209
+ torch.float32,
210
+ device,
211
+ generator,
212
+ latents,
213
+ )
214
+
215
+ # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
216
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
217
+
218
+ # 7. Denoising loop
219
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
220
+ self._num_timesteps = len(timesteps)
221
+
222
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
223
+ for i, t in enumerate(timesteps):
224
+ if self.interrupt:
225
+ continue
226
+
227
+ latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
228
+ latent_model_input = latent_model_input.to(prompt_embeds.dtype)
229
+
230
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
231
+ timestep = t.expand(latent_model_input.shape[0]).to(latents.dtype)
232
+
233
+ # predict noise model_output
234
+ noise_pred = self.transformer(
235
+ latent_model_input,
236
+ encoder_hidden_states=prompt_embeds,
237
+ encoder_attention_mask=prompt_attention_mask,
238
+ timestep=timestep,
239
+ return_dict=False,
240
+ )[0]
241
+ noise_pred = noise_pred.float()
242
+
243
+ # perform guidance
244
+ if self.do_classifier_free_guidance:
245
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
246
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
247
+
248
+ # learned sigma
249
+ if self.transformer.config.out_channels // 2 == latent_channels:
250
+ noise_pred = noise_pred.chunk(2, dim=1)[0]
251
+ else:
252
+ noise_pred = noise_pred
253
+
254
+ # compute previous image: x_t -> x_t-1
255
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
256
+
257
+ if callback_on_step_end is not None:
258
+ callback_kwargs = {}
259
+ for k in callback_on_step_end_tensor_inputs:
260
+ callback_kwargs[k] = locals()[k]
261
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
262
+
263
+ latents = callback_outputs.pop("latents", latents)
264
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
265
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
266
+
267
+ # call the callback, if provided
268
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
269
+ progress_bar.update()
270
+
271
+ if output_type == "latent":
272
+ image = latents
273
+ else:
274
+ latents = latents.to(self.vae.dtype)
275
+ image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
276
+ if use_resolution_binning:
277
+ image = self.image_processor.resize_and_crop_tensor(image, orig_width, orig_height)
278
+
279
+ if not output_type == "latent":
280
+ image = self.image_processor.postprocess(image, output_type=output_type)
281
+
282
+ # Offload all models
283
+ self.maybe_free_model_hooks()
284
+
285
+ if not return_dict:
286
+ return (image,)
287
+
288
+ return SanaPipelineOutput(images=image)
Untitled.ipynb CHANGED
@@ -2,131 +2,26 @@
2
  "cells": [
3
  {
4
  "cell_type": "code",
5
- "execution_count": 12,
6
  "id": "dca3239c-17d6-4284-a2cf-83237a55a7df",
7
  "metadata": {},
8
  "outputs": [
9
  {
10
- "data": {
11
- "application/vnd.jupyter.widget-view+json": {
12
- "model_id": "b221b6b9b9864425b10749ac984d5835",
13
- "version_major": 2,
14
- "version_minor": 0
15
- },
16
- "text/plain": [
17
- "model_index.json: 0%| | 0.00/414 [00:00<?, ?B/s]"
18
- ]
19
- },
20
- "metadata": {},
21
- "output_type": "display_data"
22
- },
23
- {
24
- "data": {
25
- "application/vnd.jupyter.widget-view+json": {
26
- "model_id": "07b4b0a81f9845afb279935eabfd0777",
27
- "version_major": 2,
28
- "version_minor": 0
29
- },
30
- "text/plain": [
31
- "Fetching 11 files: 0%| | 0/11 [00:00<?, ?it/s]"
32
- ]
33
- },
34
- "metadata": {},
35
- "output_type": "display_data"
36
- },
37
- {
38
- "data": {
39
- "application/vnd.jupyter.widget-view+json": {
40
- "model_id": "949f157d97d84f1281e3bac2d409f6c8",
41
- "version_major": 2,
42
- "version_minor": 0
43
- },
44
- "text/plain": [
45
- "text_encoder/config.json: 0%| | 0.00/703 [00:00<?, ?B/s]"
46
- ]
47
- },
48
- "metadata": {},
49
- "output_type": "display_data"
50
- },
51
- {
52
- "data": {
53
- "application/vnd.jupyter.widget-view+json": {
54
- "model_id": "581b49cdca934d7cafb351a39b035318",
55
- "version_major": 2,
56
- "version_minor": 0
57
- },
58
- "text/plain": [
59
- "model.fp16.safetensors: 0%| | 0.00/2.24G [00:00<?, ?B/s]"
60
- ]
61
- },
62
- "metadata": {},
63
- "output_type": "display_data"
64
- },
65
- {
66
- "data": {
67
- "application/vnd.jupyter.widget-view+json": {
68
- "model_id": "54cd4a2171c14f52bf196476baad63b5",
69
- "version_major": 2,
70
- "version_minor": 0
71
- },
72
- "text/plain": [
73
- "diffusion_pytorch_model.fp16.safetensors: 0%| | 0.00/3.20G [00:00<?, ?B/s]"
74
- ]
75
- },
76
- "metadata": {},
77
- "output_type": "display_data"
78
- },
79
- {
80
- "name": "stderr",
81
- "output_type": "stream",
82
- "text": [
83
- "Keyword arguments {'trust_remote_code': True} are not expected by SanaPipeline and will be ignored.\n"
84
- ]
85
- },
86
- {
87
- "data": {
88
- "application/vnd.jupyter.widget-view+json": {
89
- "model_id": "e13097eff89242839a05b60123f73ca3",
90
- "version_major": 2,
91
- "version_minor": 0
92
- },
93
- "text/plain": [
94
- "Loading pipeline components...: 0%| | 0/5 [00:00<?, ?it/s]"
95
- ]
96
- },
97
- "metadata": {},
98
- "output_type": "display_data"
99
- },
100
- {
101
- "name": "stdout",
102
- "output_type": "stream",
103
- "text": [
104
- "SanaPipeline {\n",
105
- " \"_class_name\": \"SanaPipeline\",\n",
106
- " \"_diffusers_version\": \"0.32.0.dev0\",\n",
107
- " \"_name_or_path\": \"AiArtLab/waifu-2b\",\n",
108
- " \"scheduler\": [\n",
109
- " \"diffusers\",\n",
110
- " \"FlowMatchEulerDiscreteScheduler\"\n",
111
- " ],\n",
112
- " \"text_encoder\": [\n",
113
- " \"transformers\",\n",
114
- " \"XLMRobertaModel\"\n",
115
- " ],\n",
116
- " \"tokenizer\": [\n",
117
- " \"transformers\",\n",
118
- " \"XLMRobertaTokenizerFast\"\n",
119
- " ],\n",
120
- " \"transformer\": [\n",
121
- " \"diffusers\",\n",
122
- " \"SanaTransformer2DModel\"\n",
123
- " ],\n",
124
- " \"vae\": [\n",
125
- " \"diffusers\",\n",
126
- " \"AutoencoderKL\"\n",
127
- " ]\n",
128
- "}\n",
129
- "\n"
130
  ]
131
  }
132
  ],
@@ -134,7 +29,7 @@
134
  "import torch\n",
135
  "from diffusers import DiffusionPipeline\n",
136
  "\n",
137
- "pipe_id = \"AiArtLab/waifu-2b\"\n",
138
  "variant = \"fp16\"\n",
139
  "pipe = DiffusionPipeline.from_pretrained(\n",
140
  " pipe_id, \n",
@@ -151,7 +46,33 @@
151
  "id": "b6ebc579-0eb2-4828-89d5-b40f6d5e758e",
152
  "metadata": {},
153
  "outputs": [],
154
- "source": []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
155
  }
156
  ],
157
  "metadata": {
 
2
  "cells": [
3
  {
4
  "cell_type": "code",
5
+ "execution_count": 13,
6
  "id": "dca3239c-17d6-4284-a2cf-83237a55a7df",
7
  "metadata": {},
8
  "outputs": [
9
  {
10
+ "ename": "AttributeError",
11
+ "evalue": "module 'diffusers_modules.local.pipeline_waifu' has no attribute 'WaifuPipeline'",
12
+ "output_type": "error",
13
+ "traceback": [
14
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
15
+ "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
16
+ "Cell \u001b[0;32mIn[13], line 6\u001b[0m\n\u001b[1;32m 4\u001b[0m pipe_id \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m/home/recoilme/models/waifu-2b\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 5\u001b[0m variant \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mfp16\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m----> 6\u001b[0m pipe \u001b[38;5;241m=\u001b[39m \u001b[43mDiffusionPipeline\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_pretrained\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 7\u001b[0m \u001b[43m \u001b[49m\u001b[43mpipe_id\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\n\u001b[1;32m 8\u001b[0m \u001b[43m \u001b[49m\u001b[43mvariant\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mvariant\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 9\u001b[0m \u001b[43m \u001b[49m\u001b[43mtrust_remote_code\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\n\u001b[1;32m 10\u001b[0m \u001b[43m)\u001b[49m\n\u001b[1;32m 11\u001b[0m \u001b[38;5;28mprint\u001b[39m(pipe)\n\u001b[1;32m 12\u001b[0m \u001b[38;5;66;03m#pipe_sd.to(\"cuda\")\u001b[39;00m\n",
17
+ "File \u001b[0;32m~/.local/lib/python3.11/site-packages/huggingface_hub/utils/_validators.py:114\u001b[0m, in \u001b[0;36mvalidate_hf_hub_args.<locals>._inner_fn\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 111\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m check_use_auth_token:\n\u001b[1;32m 112\u001b[0m kwargs \u001b[38;5;241m=\u001b[39m smoothly_deprecate_use_auth_token(fn_name\u001b[38;5;241m=\u001b[39mfn\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m, has_token\u001b[38;5;241m=\u001b[39mhas_token, kwargs\u001b[38;5;241m=\u001b[39mkwargs)\n\u001b[0;32m--> 114\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
18
+ "File \u001b[0;32m~/.local/lib/python3.11/site-packages/diffusers/pipelines/pipeline_utils.py:785\u001b[0m, in \u001b[0;36mDiffusionPipeline.from_pretrained\u001b[0;34m(cls, pretrained_model_name_or_path, **kwargs)\u001b[0m\n\u001b[1;32m 780\u001b[0m \u001b[38;5;66;03m# 3. Load the pipeline class, if using custom module then load it from the hub\u001b[39;00m\n\u001b[1;32m 781\u001b[0m \u001b[38;5;66;03m# if we load from explicit class, let's use it\u001b[39;00m\n\u001b[1;32m 782\u001b[0m custom_pipeline, custom_class_name \u001b[38;5;241m=\u001b[39m _resolve_custom_pipeline_and_cls(\n\u001b[1;32m 783\u001b[0m folder\u001b[38;5;241m=\u001b[39mcached_folder, config\u001b[38;5;241m=\u001b[39mconfig_dict, custom_pipeline\u001b[38;5;241m=\u001b[39mcustom_pipeline\n\u001b[1;32m 784\u001b[0m )\n\u001b[0;32m--> 785\u001b[0m pipeline_class \u001b[38;5;241m=\u001b[39m \u001b[43m_get_pipeline_class\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 786\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mcls\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 787\u001b[0m \u001b[43m \u001b[49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig_dict\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 788\u001b[0m \u001b[43m \u001b[49m\u001b[43mload_connected_pipeline\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mload_connected_pipeline\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 789\u001b[0m \u001b[43m \u001b[49m\u001b[43mcustom_pipeline\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcustom_pipeline\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 790\u001b[0m \u001b[43m \u001b[49m\u001b[43mclass_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcustom_class_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 791\u001b[0m \u001b[43m \u001b[49m\u001b[43mcache_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcache_dir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 792\u001b[0m \u001b[43m \u001b[49m\u001b[43mrevision\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcustom_revision\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 793\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 795\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m device_map \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m pipeline_class\u001b[38;5;241m.\u001b[39m_load_connected_pipes:\n\u001b[1;32m 796\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mNotImplementedError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m`device_map` is not yet supported for connected pipelines.\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
19
+ "File \u001b[0;32m~/.local/lib/python3.11/site-packages/diffusers/pipelines/pipeline_loading_utils.py:370\u001b[0m, in \u001b[0;36m_get_pipeline_class\u001b[0;34m(class_obj, config, load_connected_pipeline, custom_pipeline, repo_id, hub_revision, class_name, cache_dir, revision)\u001b[0m\n\u001b[1;32m 358\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_get_pipeline_class\u001b[39m(\n\u001b[1;32m 359\u001b[0m class_obj,\n\u001b[1;32m 360\u001b[0m config\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 367\u001b[0m revision\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 368\u001b[0m ):\n\u001b[1;32m 369\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m custom_pipeline \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m--> 370\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_get_custom_pipeline_class\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 371\u001b[0m \u001b[43m \u001b[49m\u001b[43mcustom_pipeline\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 372\u001b[0m \u001b[43m \u001b[49m\u001b[43mrepo_id\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrepo_id\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 373\u001b[0m \u001b[43m \u001b[49m\u001b[43mhub_revision\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mhub_revision\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 374\u001b[0m \u001b[43m \u001b[49m\u001b[43mclass_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mclass_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 375\u001b[0m \u001b[43m \u001b[49m\u001b[43mcache_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcache_dir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 376\u001b[0m \u001b[43m \u001b[49m\u001b[43mrevision\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrevision\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 377\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 379\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m class_obj\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m \u001b[38;5;241m!=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mDiffusionPipeline\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[1;32m 380\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m class_obj\n",
20
+ "File \u001b[0;32m~/.local/lib/python3.11/site-packages/diffusers/pipelines/pipeline_loading_utils.py:349\u001b[0m, in \u001b[0;36m_get_custom_pipeline_class\u001b[0;34m(custom_pipeline, repo_id, hub_revision, class_name, cache_dir, revision)\u001b[0m\n\u001b[1;32m 344\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m repo_id \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m hub_revision \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 345\u001b[0m \u001b[38;5;66;03m# if we load the pipeline code from the Hub\u001b[39;00m\n\u001b[1;32m 346\u001b[0m \u001b[38;5;66;03m# make sure to overwrite the `revision`\u001b[39;00m\n\u001b[1;32m 347\u001b[0m revision \u001b[38;5;241m=\u001b[39m hub_revision\n\u001b[0;32m--> 349\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mget_class_from_dynamic_module\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 350\u001b[0m \u001b[43m \u001b[49m\u001b[43mcustom_pipeline\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 351\u001b[0m \u001b[43m \u001b[49m\u001b[43mmodule_file\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfile_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 352\u001b[0m \u001b[43m \u001b[49m\u001b[43mclass_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mclass_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 353\u001b[0m \u001b[43m \u001b[49m\u001b[43mcache_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcache_dir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 354\u001b[0m \u001b[43m \u001b[49m\u001b[43mrevision\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrevision\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 355\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
21
+ "File \u001b[0;32m~/.local/lib/python3.11/site-packages/huggingface_hub/utils/_validators.py:114\u001b[0m, in \u001b[0;36mvalidate_hf_hub_args.<locals>._inner_fn\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 111\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m check_use_auth_token:\n\u001b[1;32m 112\u001b[0m kwargs \u001b[38;5;241m=\u001b[39m smoothly_deprecate_use_auth_token(fn_name\u001b[38;5;241m=\u001b[39mfn\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m, has_token\u001b[38;5;241m=\u001b[39mhas_token, kwargs\u001b[38;5;241m=\u001b[39mkwargs)\n\u001b[0;32m--> 114\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
22
+ "File \u001b[0;32m~/.local/lib/python3.11/site-packages/diffusers/utils/dynamic_modules_utils.py:457\u001b[0m, in \u001b[0;36mget_class_from_dynamic_module\u001b[0;34m(pretrained_model_name_or_path, module_file, class_name, cache_dir, force_download, proxies, token, revision, local_files_only, **kwargs)\u001b[0m\n\u001b[1;32m 446\u001b[0m \u001b[38;5;66;03m# And lastly we get the class inside our newly created module\u001b[39;00m\n\u001b[1;32m 447\u001b[0m final_module \u001b[38;5;241m=\u001b[39m get_cached_module_file(\n\u001b[1;32m 448\u001b[0m pretrained_model_name_or_path,\n\u001b[1;32m 449\u001b[0m module_file,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 455\u001b[0m local_files_only\u001b[38;5;241m=\u001b[39mlocal_files_only,\n\u001b[1;32m 456\u001b[0m )\n\u001b[0;32m--> 457\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mget_class_in_module\u001b[49m\u001b[43m(\u001b[49m\u001b[43mclass_name\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfinal_module\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mreplace\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m.py\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n",
23
+ "File \u001b[0;32m~/.local/lib/python3.11/site-packages/diffusers/utils/dynamic_modules_utils.py:166\u001b[0m, in \u001b[0;36mget_class_in_module\u001b[0;34m(class_name, module_path)\u001b[0m\n\u001b[1;32m 164\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m class_name \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 165\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m find_pipeline_class(module)\n\u001b[0;32m--> 166\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mgetattr\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mmodule\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mclass_name\u001b[49m\u001b[43m)\u001b[49m\n",
24
+ "\u001b[0;31mAttributeError\u001b[0m: module 'diffusers_modules.local.pipeline_waifu' has no attribute 'WaifuPipeline'"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
  ]
26
  }
27
  ],
 
29
  "import torch\n",
30
  "from diffusers import DiffusionPipeline\n",
31
  "\n",
32
+ "pipe_id = \"/home/recoilme/models/waifu-2b\"\n",
33
  "variant = \"fp16\"\n",
34
  "pipe = DiffusionPipeline.from_pretrained(\n",
35
  " pipe_id, \n",
 
46
  "id": "b6ebc579-0eb2-4828-89d5-b40f6d5e758e",
47
  "metadata": {},
48
  "outputs": [],
49
+ "source": [
50
+ "SanaPipeline {\n",
51
+ " \"_class_name\": \"SanaPipeline\",\n",
52
+ " \"_diffusers_version\": \"0.32.0.dev0\",\n",
53
+ " \"_name_or_path\": \"AiArtLab/waifu-2b\",\n",
54
+ " \"scheduler\": [\n",
55
+ " \"diffusers\",\n",
56
+ " \"FlowMatchEulerDiscreteScheduler\"\n",
57
+ " ],\n",
58
+ " \"text_encoder\": [\n",
59
+ " \"transformers\",\n",
60
+ " \"XLMRobertaModel\"\n",
61
+ " ],\n",
62
+ " \"tokenizer\": [\n",
63
+ " \"transformers\",\n",
64
+ " \"XLMRobertaTokenizerFast\"\n",
65
+ " ],\n",
66
+ " \"transformer\": [\n",
67
+ " \"diffusers\",\n",
68
+ " \"SanaTransformer2DModel\"\n",
69
+ " ],\n",
70
+ " \"vae\": [\n",
71
+ " \"diffusers\",\n",
72
+ " \"AutoencoderKL\"\n",
73
+ " ]\n",
74
+ "}\n"
75
+ ]
76
  }
77
  ],
78
  "metadata": {
pipeline_waifu.py CHANGED
@@ -1,4 +1,7 @@
1
  import torch
 
 
 
2
  # tokenizer
3
  from transformers import XLMRobertaTokenizerFast
4
  # text_encoder
@@ -10,6 +13,7 @@ from diffusers.models import AutoencoderKL
10
  # Transformer
11
  from diffusers import SanaTransformer2DModel
12
 
 
13
  class WaifuPipeline(DiffusionPipeline):
14
  r"""
15
  Pipeline for text-to-image generation using [waifu](https://github.com/recoilme/waifu).
 
1
  import torch
2
+ from diffusers import DiffusionPipeline
3
+
4
+ # waifu
5
  # tokenizer
6
  from transformers import XLMRobertaTokenizerFast
7
  # text_encoder
 
13
  # Transformer
14
  from diffusers import SanaTransformer2DModel
15
 
16
+
17
  class WaifuPipeline(DiffusionPipeline):
18
  r"""
19
  Pipeline for text-to-image generation using [waifu](https://github.com/recoilme/waifu).