KnowledgeNinja-LiteLlama-460Mx6MoE-1T

KnowledgeNinja-LiteLlama-460Mx6MoE-1T is a Mixure of Experts (MoE) made with the following models using LazyMergekit:

🧩 Configuration

base_model: ahxt/LiteLlama-460M-1T
gate_mode: hidden
dtype: bfloat16
experts:
  - source_model: ahxt/LiteLlama-460M-1T
    positive_prompts: ["Accounting"]
  - source_model: ahxt/LiteLlama-460M-1T
    positive_prompts: ["Finance"]
  - source_model: ahxt/LiteLlama-460M-1T
    positive_prompts: ["Strategy"]
  - source_model: ahxt/LiteLlama-460M-1T
    positive_prompts: ["Marketing"]
  - source_model: ahxt/LiteLlama-460M-1T
    positive_prompts: ["Organizational Behaviour"]
  - source_model: ahxt/LiteLlama-460M-1T
    positive_prompts: ["Economics"]

πŸ’» Usage

!pip install -qU transformers bitsandbytes accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "AkiGogikar/KnowledgeNinja-LiteLlama-460Mx6MoE-1T"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)

messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 30.23
AI2 Reasoning Challenge (25-Shot) 25.17
HellaSwag (10-Shot) 38.45
MMLU (5-Shot) 26.16
TruthfulQA (0-shot) 41.57
Winogrande (5-shot) 50.04
GSM8k (5-shot) 0.00
Downloads last month
1,823
Safetensors
Model size
1.97B params
Tensor type
BF16
Β·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Space using AkiGogikar/KnowledgeNinja-LiteLlama-460Mx6MoE-1T 1

Evaluation results