Model Gemma-3-1B Fine-tuned - Mango City Edition
This model is fine-tuned from unsloth/gemma-3-1b-it-unsloth-bnb-4bit
using the LoRA (Low-Rank Adaptation) method with a specific dataset focused on local knowledge (such as "Kota Mangga" - Indramayu, the Mango City).
This model was trained using Unsloth for significant memory and speed efficiency.
Repository Structure
This repository contains the model in two formats for flexibility:
/
βββ config.json
βββ model.safetensors
βββ tokenizer.json
βββ tokenizer_config.json
βββ special_tokens_map.json
βββ generation_config.json
βββ adapter/ # adapter LoRA
βββ adapter_config.json
βββ adapter_model.safetensors
βββ ...
How to Use
1. Using the Merged Model
This is the easiest way to use the model. You will be loading a ready-to-use merged model.
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_id = "Alamaks/Mangga-1-1b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float16, # Gunakan float16 untuk efisiensi
device_map="auto"
)
# Contoh penggunaan
inputs = tokenizer("Siapakah bupati Indramayu saat ini?", return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=50)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
2. Using the LoRA Adapter
If you want to apply the adapter to the base model manually.
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
import torch
base_model_id = "unsloth/gemma-3-1b-it"
adapter_id = "Alamaks/Mangga-1-1b"
# Load the base model
base_model = AutoModelForCausalLM.from_pretrained(
base_model_id,
torch_dtype=torch.float16,
device_map="auto"
)
# Load the tokenizer from this repo (as there might be new tokens)
tokenizer = AutoTokenizer.from_pretrained(adapter_id)
# Apply the adapter
model = PeftModel.from_pretrained(
base_model,
adapter_id,
subfolder="adapter" # Don't forget the subfolder
)
# Example usage
inputs = tokenizer("Jelaskan tentang julukan Indramayu sebagai Kota Mangga.", return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Model Details
Model Hierarchy:
- Original Model:
google/gemma-3-1b-it
(Google Gemma-3-1B Instruct) - Unsloth Base Model:
unsloth/gemma-3-1b-it
(Optimized version of the Google model) - Training Model:
unsloth/gemma-3-1b-it-unsloth-bnb-4bit
(4-bit quantized version for fine-tuning) - Final Model:
Alamaks/Mangga-1-1b
(The fine-tuned model)
Specifications:
- Method: LoRA (Low-Rank Adaptation) via Unsloth
- Language: Indramayu
- Upload Precision: 16-bit
License
Apache 2.0
- Downloads last month
- -
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support
Model tree for Alamaks/Mangga-1-1b
Base model
google/gemma-3-1b-pt
Finetuned
google/gemma-3-1b-it
Quantized
unsloth/gemma-3-1b-it-unsloth-bnb-4bit