results_indobert-large-p1_with_augmentasi
This model is a fine-tuned version of indobenchmark/indobert-large-p1 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.9420
- Accuracy: 0.6982
- Precision: 0.6942
- Recall: 0.7060
- F1: 0.6946
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
1.5551 | 1.0 | 220 | 1.1726 | 0.5114 | 0.5340 | 0.5229 | 0.5165 |
0.953 | 2.0 | 440 | 0.8799 | 0.6788 | 0.6752 | 0.6843 | 0.6770 |
0.7656 | 3.0 | 660 | 0.8589 | 0.6913 | 0.6882 | 0.6981 | 0.6922 |
0.9074 | 4.0 | 880 | 0.9420 | 0.6982 | 0.6942 | 0.7060 | 0.6946 |
0.5756 | 5.0 | 1100 | 0.8689 | 0.6948 | 0.7011 | 0.6977 | 0.6992 |
0.4301 | 6.0 | 1320 | 1.0207 | 0.6811 | 0.6816 | 0.6879 | 0.6823 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 7
Model tree for Alfanatasya/results_indobert-large-p1_with_augmentasi
Base model
indobenchmark/indobert-large-p1