results_indobert-large-p1_with_preprocessing
This model is a fine-tuned version of indobenchmark/indobert-large-p1 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6803
- Accuracy: 0.7705
- Precision: 0.7705
- Recall: 0.7824
- F1: 0.7729
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
1.6542 | 1.0 | 111 | 1.5289 | 0.2909 | 0.3703 | 0.2448 | 0.1863 |
1.3203 | 2.0 | 222 | 1.0185 | 0.6136 | 0.6042 | 0.6198 | 0.6008 |
0.8852 | 3.0 | 333 | 0.7068 | 0.7523 | 0.7510 | 0.7570 | 0.7521 |
0.6351 | 4.0 | 444 | 0.6803 | 0.7705 | 0.7705 | 0.7824 | 0.7729 |
0.4999 | 5.0 | 555 | 0.7357 | 0.7705 | 0.7717 | 0.7817 | 0.7699 |
0.3833 | 6.0 | 666 | 0.7524 | 0.7432 | 0.7442 | 0.7578 | 0.7491 |
Framework versions
- Transformers 4.52.4
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.2
- Downloads last month
- 8
Model tree for Alfanatasya/results_indobert-large-p1_with_preprocessing
Base model
indobenchmark/indobert-large-p1