SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-mpnet-base-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
1 |
|
0 |
|
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("AliaeAI/setfit_nli_v2")
# Run inference
preds = model("I stressed a lot [SEP] What kind of work do you do?")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 6 | 33.4038 | 95 |
Label | Training Sample Count |
---|---|
0 | 1856 |
1 | 1856 |
Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (3, 3)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 10
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0004 | 1 | 0.2774 | - |
0.0216 | 50 | 0.2696 | - |
0.0431 | 100 | 0.2591 | - |
0.0647 | 150 | 0.2611 | - |
0.0862 | 200 | 0.2555 | - |
0.1078 | 250 | 0.2551 | - |
0.1293 | 300 | 0.2579 | - |
0.1509 | 350 | 0.2557 | - |
0.1724 | 400 | 0.2503 | - |
0.1940 | 450 | 0.2553 | - |
0.2155 | 500 | 0.2508 | - |
0.2371 | 550 | 0.2463 | - |
0.2586 | 600 | 0.2405 | - |
0.2802 | 650 | 0.2268 | - |
0.3017 | 700 | 0.2245 | - |
0.3233 | 750 | 0.2057 | - |
0.3448 | 800 | 0.2019 | - |
0.3664 | 850 | 0.2028 | - |
0.3879 | 900 | 0.1716 | - |
0.4095 | 950 | 0.1675 | - |
0.4310 | 1000 | 0.1463 | - |
0.4526 | 1050 | 0.1417 | - |
0.4741 | 1100 | 0.1259 | - |
0.4957 | 1150 | 0.1102 | - |
0.5172 | 1200 | 0.1008 | - |
0.5388 | 1250 | 0.0958 | - |
0.5603 | 1300 | 0.0947 | - |
0.5819 | 1350 | 0.0906 | - |
0.6034 | 1400 | 0.0785 | - |
0.625 | 1450 | 0.0757 | - |
0.6466 | 1500 | 0.0654 | - |
0.6681 | 1550 | 0.0588 | - |
0.6897 | 1600 | 0.0666 | - |
0.7112 | 1650 | 0.0536 | - |
0.7328 | 1700 | 0.0587 | - |
0.7543 | 1750 | 0.0552 | - |
0.7759 | 1800 | 0.0475 | - |
0.7974 | 1850 | 0.0406 | - |
0.8190 | 1900 | 0.0386 | - |
0.8405 | 1950 | 0.0334 | - |
0.8621 | 2000 | 0.0362 | - |
0.8836 | 2050 | 0.0279 | - |
0.9052 | 2100 | 0.0271 | - |
0.9267 | 2150 | 0.0325 | - |
0.9483 | 2200 | 0.0281 | - |
0.9698 | 2250 | 0.0365 | - |
0.9914 | 2300 | 0.0316 | - |
1.0129 | 2350 | 0.024 | - |
1.0345 | 2400 | 0.0237 | - |
1.0560 | 2450 | 0.0244 | - |
1.0776 | 2500 | 0.0217 | - |
1.0991 | 2550 | 0.0183 | - |
1.1207 | 2600 | 0.0175 | - |
1.1422 | 2650 | 0.0169 | - |
1.1638 | 2700 | 0.0233 | - |
1.1853 | 2750 | 0.019 | - |
1.2069 | 2800 | 0.023 | - |
1.2284 | 2850 | 0.0177 | - |
1.25 | 2900 | 0.0158 | - |
1.2716 | 2950 | 0.0195 | - |
1.2931 | 3000 | 0.0098 | - |
1.3147 | 3050 | 0.0202 | - |
1.3362 | 3100 | 0.0094 | - |
1.3578 | 3150 | 0.0178 | - |
1.3793 | 3200 | 0.0168 | - |
1.4009 | 3250 | 0.0184 | - |
1.4224 | 3300 | 0.0132 | - |
1.4440 | 3350 | 0.0139 | - |
1.4655 | 3400 | 0.0132 | - |
1.4871 | 3450 | 0.0131 | - |
1.5086 | 3500 | 0.0147 | - |
1.5302 | 3550 | 0.012 | - |
1.5517 | 3600 | 0.0134 | - |
1.5733 | 3650 | 0.011 | - |
1.5948 | 3700 | 0.0141 | - |
1.6164 | 3750 | 0.0078 | - |
1.6379 | 3800 | 0.0115 | - |
1.6595 | 3850 | 0.0123 | - |
1.6810 | 3900 | 0.0119 | - |
1.7026 | 3950 | 0.0143 | - |
1.7241 | 4000 | 0.0112 | - |
1.7457 | 4050 | 0.01 | - |
1.7672 | 4100 | 0.0139 | - |
1.7888 | 4150 | 0.0113 | - |
1.8103 | 4200 | 0.0093 | - |
1.8319 | 4250 | 0.0091 | - |
1.8534 | 4300 | 0.0124 | - |
1.875 | 4350 | 0.0085 | - |
1.8966 | 4400 | 0.009 | - |
1.9181 | 4450 | 0.0103 | - |
1.9397 | 4500 | 0.008 | - |
1.9612 | 4550 | 0.008 | - |
1.9828 | 4600 | 0.0108 | - |
2.0043 | 4650 | 0.0096 | - |
2.0259 | 4700 | 0.0086 | - |
2.0474 | 4750 | 0.0062 | - |
2.0690 | 4800 | 0.0048 | - |
2.0905 | 4850 | 0.006 | - |
2.1121 | 4900 | 0.0052 | - |
2.1336 | 4950 | 0.0062 | - |
2.1552 | 5000 | 0.0076 | - |
2.1767 | 5050 | 0.0084 | - |
2.1983 | 5100 | 0.0051 | - |
2.2198 | 5150 | 0.0063 | - |
2.2414 | 5200 | 0.0067 | - |
2.2629 | 5250 | 0.0058 | - |
2.2845 | 5300 | 0.0058 | - |
2.3060 | 5350 | 0.0079 | - |
2.3276 | 5400 | 0.0076 | - |
2.3491 | 5450 | 0.0101 | - |
2.3707 | 5500 | 0.0044 | - |
2.3922 | 5550 | 0.0051 | - |
2.4138 | 5600 | 0.0044 | - |
2.4353 | 5650 | 0.0043 | - |
2.4569 | 5700 | 0.0066 | - |
2.4784 | 5750 | 0.0059 | - |
2.5 | 5800 | 0.0097 | - |
2.5216 | 5850 | 0.0054 | - |
2.5431 | 5900 | 0.0057 | - |
2.5647 | 5950 | 0.0033 | - |
2.5862 | 6000 | 0.0049 | - |
2.6078 | 6050 | 0.0038 | - |
2.6293 | 6100 | 0.0056 | - |
2.6509 | 6150 | 0.006 | - |
2.6724 | 6200 | 0.0061 | - |
2.6940 | 6250 | 0.0031 | - |
2.7155 | 6300 | 0.0059 | - |
2.7371 | 6350 | 0.004 | - |
2.7586 | 6400 | 0.0033 | - |
2.7802 | 6450 | 0.0031 | - |
2.8017 | 6500 | 0.0062 | - |
2.8233 | 6550 | 0.0063 | - |
2.8448 | 6600 | 0.0055 | - |
2.8664 | 6650 | 0.0026 | - |
2.8879 | 6700 | 0.004 | - |
2.9095 | 6750 | 0.0039 | - |
2.9310 | 6800 | 0.005 | - |
2.9526 | 6850 | 0.0064 | - |
2.9741 | 6900 | 0.0058 | - |
2.9957 | 6950 | 0.0057 | - |
Framework Versions
- Python: 3.11.13
- SetFit: 1.2.0.dev0
- Sentence Transformers: 4.1.0
- Transformers: 4.52.4
- PyTorch: 2.6.0+cu124
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support