phi2-2b-absa / README.md
Alpaca69B's picture
Update README.md
559c9ab verified
---
library_name: transformers
tags: []
---
---
# phi2-2b-absa: Fine-Tuned Aspect-Based Sentiment Analysis Model
## Model Description
The **phi2-2b-absa** model is a fine-tuned aspect-based sentiment analysis (ABSA) model based on the Microsoft Phi-2 model. It has been trained on the **semeval2016-full-absa-reviews-english-translated-resampled** dataset. The model predicts sentiments towards different aspects mentioned in a given sentence.
## Fine-Tuning Details
The fine tuning can be revisited on [Google Colab](https://colab.research.google.com/drive/1n3ykETLpHQPXwPhUcOe-z9cG3ThrDkSi?usp=sharing).
### Dataset
- **Name:** semeval2016-full-absa-reviews-english-translated-resampled
- **Description:** Annotated dataset for ABSA containing sentences, aspects, sentiments, and additional contextual text. It is split into train and test sets.
### Model Architecture
- **Base Model:** Microsoft Phi-2
- **Fine-Tuned Model:** phi2-2b-absa
### Fine-Tuning Parameters
- **LoRA Attention Dimension (lora_r):** 64
- **LoRA Scaling Parameter (lora_alpha):** 16
- **LoRA Dropout Probability (lora_dropout):** 0.1
### BitsAndBytes Quantization
- **Activate 4-bit Precision:** True
- **Compute Dtype for 4-bit Models:** float16
- **Quantization Type:** nf4
### Training Parameters
- **Number of Training Epochs:** 1
- **Batch Size per GPU for Training:** 4
- **Batch Size per GPU for Evaluation:** 4
- **Gradient Accumulation Steps:** 1
- **Learning Rate:** 2e-4
- **Weight Decay:** 0.001
- **Optimizer:** PagedAdamW (32-bit)
- **Learning Rate Scheduler:** Cosine
### SFT Parameters
- **Maximum Sequence Length:** None
- **Packing:** False
## How to Use
```
from transformers import AutoTokenizer, pipeline
import torch
model = "Alpaca69B/llama-2-7b-absa-semeval-2016"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
torch_dtype=torch.float16,
device="auto",
)
input_sentence = "the first thing that attracts attention is the warm reception and the smiling receptionists."
sequences = pipeline(
f'### Human: {input_sentence} ### Assistant: aspect:',
do_sample=True,
top_k=10,
num_return_sequences=1,
eos_token_id=tokenizer.eos_token_id,
max_length=200,
)
sequences[0]['generated_text']
```
Testing can be seen on [Google Colab](https://colab.research.google.com/drive/1eKdZYYWiivyeCQDsocGBstVODMLZyT-_?usp=sharing)
## Acknowledgments
- The fine-tuning process and model development were performed by Ben Kampmann.
---