See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/tinyllama-chat
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- daed85532ae01daa_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/daed85532ae01daa_train_data.json
type:
field_input: input
field_instruction: instruction
field_output: output
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
device_map:
? ''
: 0,1,2,3,4,5,6,7
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 400
eval_table_size: null
flash_attention: true
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/35fb927f-d4dd-4902-b051-fdae57931bbf
hub_repo: null
hub_strategy: null
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
- down_proj
- up_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 14192
micro_batch_size: 2
mlflow_experiment_name: /tmp/daed85532ae01daa_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 400
sequence_len: 2048
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: d7c344bd-e406-41ee-ad84-5b799adb7e49
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: d7c344bd-e406-41ee-ad84-5b799adb7e49
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
35fb927f-d4dd-4902-b051-fdae57931bbf
This model is a fine-tuned version of unsloth/tinyllama-chat on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.1144
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 14192
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.6758 | 0.0001 | 1 | 1.8920 |
1.3241 | 0.0413 | 400 | 1.6002 |
1.7018 | 0.0826 | 800 | 1.5184 |
1.8543 | 0.1239 | 1200 | 1.4654 |
1.292 | 0.1652 | 1600 | 1.4236 |
1.5167 | 0.2065 | 2000 | 1.3890 |
1.3281 | 0.2478 | 2400 | 1.3660 |
1.376 | 0.2891 | 2800 | 1.3410 |
1.366 | 0.3304 | 3200 | 1.3217 |
1.3738 | 0.3717 | 3600 | 1.3012 |
1.4379 | 0.4130 | 4000 | 1.2837 |
1.2683 | 0.4543 | 4400 | 1.2698 |
1.2872 | 0.4956 | 4800 | 1.2540 |
1.2 | 0.5369 | 5200 | 1.2423 |
1.2733 | 0.5782 | 5600 | 1.2279 |
1.5039 | 0.6195 | 6000 | 1.2165 |
1.2798 | 0.6608 | 6400 | 1.2074 |
1.7364 | 0.7022 | 6800 | 1.1982 |
1.0885 | 0.7435 | 7200 | 1.1857 |
0.9772 | 0.7848 | 7600 | 1.1745 |
1.1519 | 0.8261 | 8000 | 1.1681 |
1.2283 | 0.8674 | 8400 | 1.1586 |
0.9801 | 0.9087 | 8800 | 1.1494 |
1.1179 | 0.9500 | 9200 | 1.1420 |
1.069 | 0.9913 | 9600 | 1.1351 |
1.1033 | 1.0326 | 10000 | 1.1340 |
0.4977 | 1.0739 | 10400 | 1.1299 |
0.9901 | 1.1152 | 10800 | 1.1269 |
1.3081 | 1.1565 | 11200 | 1.1241 |
0.985 | 1.1978 | 11600 | 1.1208 |
1.088 | 1.2391 | 12000 | 1.1191 |
1.1772 | 1.2804 | 12400 | 1.1167 |
1.2013 | 1.3217 | 12800 | 1.1155 |
1.0287 | 1.3630 | 13200 | 1.1150 |
0.9724 | 1.4043 | 13600 | 1.1145 |
0.9901 | 1.4456 | 14000 | 1.1144 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Alphatao/35fb927f-d4dd-4902-b051-fdae57931bbf
Base model
unsloth/tinyllama-chat