See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: JackFram/llama-68m
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 3b022bbf876bb022_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/3b022bbf876bb022_train_data.json
type:
field_instruction: instruction
field_output: output
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/48b93c3f-b584-4eea-af10-bdcd3b475793
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 2520
micro_batch_size: 4
mlflow_experiment_name: /tmp/3b022bbf876bb022_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 2048
special_tokens:
pad_token: </s>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.04
wandb_entity: null
wandb_mode: online
wandb_name: 9a2de9cd-181f-4b68-b9fa-bbcc319584cc
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 9a2de9cd-181f-4b68-b9fa-bbcc319584cc
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
48b93c3f-b584-4eea-af10-bdcd3b475793
This model is a fine-tuned version of JackFram/llama-68m on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.4406
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 2520
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
5.1347 | 0.0006 | 1 | 5.3534 |
3.8199 | 0.0648 | 100 | 3.8628 |
3.6453 | 0.1295 | 200 | 3.4683 |
3.0499 | 0.1943 | 300 | 3.2360 |
3.001 | 0.2591 | 400 | 3.0761 |
2.8141 | 0.3239 | 500 | 2.9496 |
2.6098 | 0.3886 | 600 | 2.8526 |
2.5753 | 0.4534 | 700 | 2.7764 |
2.8254 | 0.5182 | 800 | 2.7130 |
2.5672 | 0.5829 | 900 | 2.6640 |
2.4898 | 0.6477 | 1000 | 2.6243 |
2.9367 | 0.7125 | 1100 | 2.5887 |
2.5477 | 0.7773 | 1200 | 2.5608 |
2.5939 | 0.8420 | 1300 | 2.5375 |
2.4766 | 0.9068 | 1400 | 2.5170 |
2.3303 | 0.9716 | 1500 | 2.4973 |
2.4749 | 1.0368 | 1600 | 2.4847 |
2.4359 | 1.1016 | 1700 | 2.4736 |
2.4272 | 1.1664 | 1800 | 2.4631 |
2.4509 | 1.2312 | 1900 | 2.4559 |
2.6858 | 1.2959 | 2000 | 2.4515 |
2.1665 | 1.3607 | 2100 | 2.4459 |
2.4758 | 1.4255 | 2200 | 2.4433 |
2.4798 | 1.4902 | 2300 | 2.4416 |
2.2094 | 1.5550 | 2400 | 2.4407 |
2.193 | 1.6198 | 2500 | 2.4406 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
HF Inference deployability: The model has no pipeline_tag.
Model tree for Alphatao/48b93c3f-b584-4eea-af10-bdcd3b475793
Base model
JackFram/llama-68m