See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/Qwen2.5-0.5B-Instruct
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- baefaea883679862_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/baefaea883679862_train_data.json
type:
field_input: input
field_instruction: instruction
field_output: output
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
device_map:
? ''
: 0,1,2,3,4,5,6,7
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 400
eval_table_size: null
flash_attention: true
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/4bb1fb3b-9da9-4331-b85b-36f0c5175da8
hub_repo: null
hub_strategy: null
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 29912
micro_batch_size: 2
mlflow_experiment_name: /tmp/baefaea883679862_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 400
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 576aa853-9400-49a2-9b33-d7849e6e83c6
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 576aa853-9400-49a2-9b33-d7849e6e83c6
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
4bb1fb3b-9da9-4331-b85b-36f0c5175da8
This model is a fine-tuned version of unsloth/Qwen2.5-0.5B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.9987
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 15966
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.3951 | 0.0001 | 1 | 2.4080 |
1.3849 | 0.0501 | 400 | 1.1384 |
1.3071 | 0.1002 | 800 | 1.1044 |
1.1328 | 0.1503 | 1200 | 1.0976 |
1.2365 | 0.2004 | 1600 | 1.0958 |
1.4147 | 0.2505 | 2000 | 1.0896 |
1.0192 | 0.3006 | 2400 | 1.0820 |
1.1322 | 0.3508 | 2800 | 1.0800 |
1.1178 | 0.4009 | 3200 | 1.0719 |
1.6549 | 0.4510 | 3600 | 1.0713 |
1.1885 | 0.5011 | 4000 | 1.0651 |
1.0638 | 0.5512 | 4400 | 1.0648 |
1.4894 | 0.6013 | 4800 | 1.0620 |
1.5195 | 0.6514 | 5200 | 1.0695 |
0.9605 | 0.7015 | 5600 | 1.0542 |
1.1562 | 0.7516 | 6000 | 1.0432 |
0.6789 | 0.8017 | 6400 | 1.0450 |
1.0593 | 0.8518 | 6800 | 1.0394 |
1.3117 | 0.9019 | 7200 | 1.0416 |
1.2763 | 0.9521 | 7600 | 1.0348 |
0.8916 | 1.0022 | 8000 | 1.0313 |
0.5844 | 1.0523 | 8400 | 1.0307 |
1.0794 | 1.1024 | 8800 | 1.0265 |
1.5881 | 1.1525 | 9200 | 1.0250 |
1.0954 | 1.2027 | 9600 | 1.0237 |
1.1153 | 1.2528 | 10000 | 1.0204 |
0.6512 | 1.3029 | 10400 | 1.0165 |
0.498 | 1.3530 | 10800 | 1.0149 |
1.048 | 1.4031 | 11200 | 1.0130 |
0.9372 | 1.4532 | 11600 | 1.0102 |
0.9142 | 1.5033 | 12000 | 1.0067 |
0.8444 | 1.5534 | 12400 | 1.0064 |
1.1215 | 1.6035 | 12800 | 1.0047 |
1.8016 | 1.6536 | 13200 | 1.0028 |
0.9739 | 1.7037 | 13600 | 1.0016 |
0.8278 | 1.7538 | 14000 | 1.0006 |
1.1798 | 1.8040 | 14400 | 0.9996 |
0.9944 | 1.8541 | 14800 | 0.9992 |
0.8047 | 1.9042 | 15200 | 0.9988 |
0.7495 | 1.9543 | 15600 | 0.9987 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Alphatao/4bb1fb3b-9da9-4331-b85b-36f0c5175da8
Base model
Qwen/Qwen2.5-0.5B
Finetuned
Qwen/Qwen2.5-0.5B-Instruct
Finetuned
unsloth/Qwen2.5-0.5B-Instruct