Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: unsloth/Qwen2.5-0.5B
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - f2f0b8a70078fb6f_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/f2f0b8a70078fb6f_train_data.json
  type:
    field_input: Category
    field_instruction: Description
    field_output: Product Name
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
device_map:
  ? ''
  : 0,1,2,3,4,5,6,7
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/4d16a534-ba5e-4b9b-870e-f02937176547
hub_repo: null
hub_strategy: null
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.3
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 6528
micro_batch_size: 4
mlflow_experiment_name: /tmp/f2f0b8a70078fb6f_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.04
wandb_entity: null
wandb_mode: online
wandb_name: a301c3a8-0dab-457d-9ed0-613fdf7a26f0
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: a301c3a8-0dab-457d-9ed0-613fdf7a26f0
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

4d16a534-ba5e-4b9b-870e-f02937176547

This model is a fine-tuned version of unsloth/Qwen2.5-0.5B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5304

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 1976

Training results

Training Loss Epoch Step Validation Loss
4.5373 0.0010 1 4.6015
2.9801 0.1012 100 2.8208
2.2756 0.2025 200 2.4652
1.6677 0.3037 300 2.1496
2.3779 0.4050 400 1.9233
1.3764 0.5062 500 1.6953
2.1241 0.6074 600 1.5010
1.4126 0.7087 700 1.2714
1.1295 0.8099 800 1.1197
0.9943 0.9112 900 0.9847
0.8463 1.0124 1000 0.8701
0.6996 1.1136 1100 0.8127
0.8201 1.2149 1200 0.7468
0.5328 1.3161 1300 0.6818
0.303 1.4174 1400 0.6275
0.5692 1.5186 1500 0.5878
0.5 1.6198 1600 0.5578
0.3182 1.7211 1700 0.5419
0.5061 1.8223 1800 0.5350
0.2993 1.9236 1900 0.5304

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
2
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Alphatao/4d16a534-ba5e-4b9b-870e-f02937176547

Base model

Qwen/Qwen2.5-0.5B
Adapter
(267)
this model