See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/gemma-2-9b-it
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- dfb6bcb29a5bcb68_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/dfb6bcb29a5bcb68_train_data.json
type:
field_input: statements
field_instruction: quiz
field_output: solution_text
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
device_map:
? ''
: 0,1,2,3,4,5,6,7
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 400
eval_table_size: null
flash_attention: false
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/9529a318-6254-4cce-a04e-f3fe0831cffc
hub_repo: null
hub_strategy: null
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 4599
micro_batch_size: 2
mlflow_experiment_name: /tmp/dfb6bcb29a5bcb68_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 400
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.04
wandb_entity: null
wandb_mode: online
wandb_name: a0d4f75b-7403-424e-b96b-ba4e344fa29f
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: a0d4f75b-7403-424e-b96b-ba4e344fa29f
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
9529a318-6254-4cce-a04e-f3fe0831cffc
This model is a fine-tuned version of unsloth/gemma-2-9b-it on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0265
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 4599
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.2063 | 0.0002 | 1 | 1.1616 |
0.106 | 0.0920 | 400 | 0.0863 |
0.0832 | 0.1841 | 800 | 0.0718 |
0.1227 | 0.2761 | 1200 | 0.0985 |
0.0634 | 0.3682 | 1600 | 0.0632 |
0.0363 | 0.4602 | 2000 | 0.0509 |
0.0411 | 0.5523 | 2400 | 0.0454 |
0.067 | 0.6443 | 2800 | 0.0390 |
0.056 | 0.7364 | 3200 | 0.0350 |
0.0234 | 0.8284 | 3600 | 0.0316 |
0.0204 | 0.9204 | 4000 | 0.0272 |
0.013 | 1.0125 | 4400 | 0.0265 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Alphatao/9529a318-6254-4cce-a04e-f3fe0831cffc
Base model
unsloth/gemma-2-9b-it