See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/llama-3-8b-Instruct
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- c0ec6108c83afe61_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/c0ec6108c83afe61_train_data.json
type:
field_input: input
field_instruction: instruction
field_output: chosen
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
device_map:
? ''
: 0,1,2,3,4,5,6,7
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/aa4f337e-4dc1-4577-8c3f-5f20fe95556a
hub_repo: null
hub_strategy: null
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
- down_proj
- up_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 1218
micro_batch_size: 4
mlflow_experiment_name: /tmp/c0ec6108c83afe61_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 2048
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.047493754571273875
wandb_entity: null
wandb_mode: online
wandb_name: aa6026b9-2848-4f1c-9f66-f064de659c63
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: aa6026b9-2848-4f1c-9f66-f064de659c63
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
aa4f337e-4dc1-4577-8c3f-5f20fe95556a
This model is a fine-tuned version of unsloth/llama-3-8b-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1383
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 1218
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.6968 | 0.0003 | 1 | 0.6846 |
0.2434 | 0.0319 | 100 | 0.2253 |
0.2147 | 0.0638 | 200 | 0.2074 |
0.2058 | 0.0957 | 300 | 0.1914 |
0.19 | 0.1276 | 400 | 0.1808 |
0.1718 | 0.1596 | 500 | 0.1709 |
0.1899 | 0.1915 | 600 | 0.1628 |
0.1424 | 0.2234 | 700 | 0.1549 |
0.1678 | 0.2553 | 800 | 0.1484 |
0.151 | 0.2872 | 900 | 0.1433 |
0.1485 | 0.3191 | 1000 | 0.1403 |
0.1541 | 0.3510 | 1100 | 0.1387 |
0.1446 | 0.3829 | 1200 | 0.1383 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Alphatao/aa4f337e-4dc1-4577-8c3f-5f20fe95556a
Base model
unsloth/llama-3-8b-Instruct