See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/Llama-3.2-3B
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- cfe4cfbd460d8124_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/cfe4cfbd460d8124_train_data.json
type:
field_input: OriginalAddress1
field_instruction: PermitTypeDesc
field_output: Description
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
device_map:
? ''
: 0,1,2,3,4,5,6,7
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/bfdb40d4-c9b7-45f9-b919-894a52b54660
hub_repo: null
hub_strategy: null
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
- down_proj
- up_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 2070
micro_batch_size: 4
mlflow_experiment_name: /tmp/cfe4cfbd460d8124_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 2048
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.04127830659875009
wandb_entity: null
wandb_mode: online
wandb_name: 1c0ec80c-26dd-4dfe-858e-1b40744d4a00
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 1c0ec80c-26dd-4dfe-858e-1b40744d4a00
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
bfdb40d4-c9b7-45f9-b919-894a52b54660
This model is a fine-tuned version of unsloth/Llama-3.2-3B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.4649
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 2070
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
4.5394 | 0.0003 | 1 | 4.5230 |
1.9168 | 0.0276 | 100 | 1.8147 |
1.6452 | 0.0551 | 200 | 1.7164 |
1.6071 | 0.0827 | 300 | 1.6726 |
1.7231 | 0.1102 | 400 | 1.6363 |
1.2157 | 0.1378 | 500 | 1.6138 |
1.5274 | 0.1653 | 600 | 1.5968 |
1.5334 | 0.1929 | 700 | 1.5771 |
1.6462 | 0.2204 | 800 | 1.5659 |
1.7249 | 0.2480 | 900 | 1.5432 |
1.6462 | 0.2755 | 1000 | 1.5300 |
1.4306 | 0.3031 | 1100 | 1.5184 |
1.673 | 0.3307 | 1200 | 1.5094 |
1.5232 | 0.3582 | 1300 | 1.4975 |
1.6796 | 0.3858 | 1400 | 1.4885 |
1.6199 | 0.4133 | 1500 | 1.4817 |
1.6107 | 0.4409 | 1600 | 1.4766 |
1.5798 | 0.4684 | 1700 | 1.4720 |
1.7002 | 0.4960 | 1800 | 1.4678 |
1.4047 | 0.5235 | 1900 | 1.4657 |
1.1164 | 0.5511 | 2000 | 1.4649 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support