See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: JackFram/llama-68m
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- d54863544af6e081_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/d54863544af6e081_train_data.json
type:
field_input: original_version
field_instruction: title
field_output: french_version
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
device_map:
? ''
: 0,1,2,3,4,5,6,7
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/c0aaf4e6-63a1-4a45-9922-241a2b1c7a1a
hub_repo: null
hub_strategy: null
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
- down_proj
- up_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 3060
micro_batch_size: 4
mlflow_experiment_name: /tmp/d54863544af6e081_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 2048
special_tokens:
pad_token: </s>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: a9bd013b-3193-4c13-8ce7-c6eff4cc9e40
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: a9bd013b-3193-4c13-8ce7-c6eff4cc9e40
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
c0aaf4e6-63a1-4a45-9922-241a2b1c7a1a
This model is a fine-tuned version of JackFram/llama-68m on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.5669
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 3060
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
4.8067 | 0.0003 | 1 | 4.6919 |
3.5023 | 0.0343 | 100 | 3.3711 |
3.2673 | 0.0686 | 200 | 3.1533 |
3.0786 | 0.1029 | 300 | 3.0437 |
2.6755 | 0.1372 | 400 | 2.9643 |
2.8915 | 0.1715 | 500 | 2.9037 |
2.881 | 0.2058 | 600 | 2.8452 |
2.9213 | 0.2401 | 700 | 2.8051 |
2.7981 | 0.2744 | 800 | 2.7714 |
3.2448 | 0.3087 | 900 | 2.7443 |
2.9316 | 0.3431 | 1000 | 2.7185 |
2.9415 | 0.3774 | 1100 | 2.6960 |
2.53 | 0.4117 | 1200 | 2.6773 |
2.6615 | 0.4460 | 1300 | 2.6626 |
2.6712 | 0.4803 | 1400 | 2.6469 |
2.8272 | 0.5146 | 1500 | 2.6340 |
2.981 | 0.5489 | 1600 | 2.6243 |
2.6223 | 0.5832 | 1700 | 2.6147 |
2.7597 | 0.6175 | 1800 | 2.6052 |
2.6652 | 0.6518 | 1900 | 2.5975 |
2.7457 | 0.6861 | 2000 | 2.5915 |
2.6991 | 0.7204 | 2100 | 2.5853 |
2.6705 | 0.7547 | 2200 | 2.5808 |
2.4935 | 0.7890 | 2300 | 2.5770 |
2.7034 | 0.8233 | 2400 | 2.5737 |
2.4642 | 0.8576 | 2500 | 2.5711 |
2.6038 | 0.8919 | 2600 | 2.5694 |
2.6465 | 0.9262 | 2700 | 2.5682 |
2.5621 | 0.9605 | 2800 | 2.5674 |
2.6497 | 0.9949 | 2900 | 2.5670 |
2.5665 | 1.0292 | 3000 | 2.5669 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
HF Inference deployability: The model has no pipeline_tag.
Model tree for Alphatao/c0aaf4e6-63a1-4a45-9922-241a2b1c7a1a
Base model
JackFram/llama-68m