Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: unsloth/Qwen2.5-0.5B-Instruct
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - baefaea883679862_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/baefaea883679862_train_data.json
  type:
    field_input: input
    field_instruction: instruction
    field_output: output
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
device_map:
  ? ''
  : 0,1,2,3,4,5,6,7
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/c3fa6f9d-7fe0-4e21-baf9-6ba39b462494
hub_repo: null
hub_strategy: null
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 7241
micro_batch_size: 4
mlflow_experiment_name: /tmp/baefaea883679862_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 576aa853-9400-49a2-9b33-d7849e6e83c6
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 576aa853-9400-49a2-9b33-d7849e6e83c6
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

c3fa6f9d-7fe0-4e21-baf9-6ba39b462494

This model is a fine-tuned version of unsloth/Qwen2.5-0.5B-Instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0727

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 3992

Training results

Training Loss Epoch Step Validation Loss
2.1612 0.0005 1 2.3533
1.4468 0.0501 100 1.2341
1.3596 0.1002 200 1.1954
1.2482 0.1503 300 1.1886
1.2572 0.2004 400 1.1751
1.3379 0.2505 500 1.1787
1.0808 0.3006 600 1.1665
1.323 0.3507 700 1.1587
1.0641 0.4009 800 1.1551
1.4721 0.4510 900 1.1536
1.2638 0.5011 1000 1.1562
1.0674 0.5512 1100 1.1383
1.3397 0.6013 1200 1.1337
1.3564 0.6514 1300 1.1363
1.2138 0.7015 1400 1.1275
1.2924 0.7516 1500 1.1188
1.2475 0.8017 1600 1.1163
1.2212 0.8518 1700 1.1130
1.2873 0.9019 1800 1.1105
1.2986 0.9520 1900 1.1143
1.0296 1.0022 2000 1.1074
1.0085 1.0523 2100 1.1094
0.9086 1.1024 2200 1.1057
1.2602 1.1525 2300 1.1061
1.1946 1.2026 2400 1.1030
0.8911 1.2527 2500 1.0948
0.9394 1.3028 2600 1.0908
0.8336 1.3529 2700 1.0920
0.7358 1.4030 2800 1.0874
0.7739 1.4532 2900 1.0850
0.8507 1.5033 3000 1.0822
0.8566 1.5534 3100 1.0811
1.1661 1.6035 3200 1.0790
0.9953 1.6536 3300 1.0765
0.6751 1.7037 3400 1.0747
1.0271 1.7538 3500 1.0749
1.1342 1.8039 3600 1.0738
0.8969 1.8540 3700 1.0729
1.0329 1.9041 3800 1.0728
0.9264 1.9542 3900 1.0727

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
5
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Alphatao/c3fa6f9d-7fe0-4e21-baf9-6ba39b462494

Base model

Qwen/Qwen2.5-0.5B
Adapter
(229)
this model