See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/Qwen2.5-0.5B-Instruct
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- baefaea883679862_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/baefaea883679862_train_data.json
type:
field_input: input
field_instruction: instruction
field_output: output
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
device_map:
? ''
: 0,1,2,3,4,5,6,7
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/c3fa6f9d-7fe0-4e21-baf9-6ba39b462494
hub_repo: null
hub_strategy: null
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 7241
micro_batch_size: 4
mlflow_experiment_name: /tmp/baefaea883679862_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 576aa853-9400-49a2-9b33-d7849e6e83c6
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 576aa853-9400-49a2-9b33-d7849e6e83c6
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
c3fa6f9d-7fe0-4e21-baf9-6ba39b462494
This model is a fine-tuned version of unsloth/Qwen2.5-0.5B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.0727
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 3992
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.1612 | 0.0005 | 1 | 2.3533 |
1.4468 | 0.0501 | 100 | 1.2341 |
1.3596 | 0.1002 | 200 | 1.1954 |
1.2482 | 0.1503 | 300 | 1.1886 |
1.2572 | 0.2004 | 400 | 1.1751 |
1.3379 | 0.2505 | 500 | 1.1787 |
1.0808 | 0.3006 | 600 | 1.1665 |
1.323 | 0.3507 | 700 | 1.1587 |
1.0641 | 0.4009 | 800 | 1.1551 |
1.4721 | 0.4510 | 900 | 1.1536 |
1.2638 | 0.5011 | 1000 | 1.1562 |
1.0674 | 0.5512 | 1100 | 1.1383 |
1.3397 | 0.6013 | 1200 | 1.1337 |
1.3564 | 0.6514 | 1300 | 1.1363 |
1.2138 | 0.7015 | 1400 | 1.1275 |
1.2924 | 0.7516 | 1500 | 1.1188 |
1.2475 | 0.8017 | 1600 | 1.1163 |
1.2212 | 0.8518 | 1700 | 1.1130 |
1.2873 | 0.9019 | 1800 | 1.1105 |
1.2986 | 0.9520 | 1900 | 1.1143 |
1.0296 | 1.0022 | 2000 | 1.1074 |
1.0085 | 1.0523 | 2100 | 1.1094 |
0.9086 | 1.1024 | 2200 | 1.1057 |
1.2602 | 1.1525 | 2300 | 1.1061 |
1.1946 | 1.2026 | 2400 | 1.1030 |
0.8911 | 1.2527 | 2500 | 1.0948 |
0.9394 | 1.3028 | 2600 | 1.0908 |
0.8336 | 1.3529 | 2700 | 1.0920 |
0.7358 | 1.4030 | 2800 | 1.0874 |
0.7739 | 1.4532 | 2900 | 1.0850 |
0.8507 | 1.5033 | 3000 | 1.0822 |
0.8566 | 1.5534 | 3100 | 1.0811 |
1.1661 | 1.6035 | 3200 | 1.0790 |
0.9953 | 1.6536 | 3300 | 1.0765 |
0.6751 | 1.7037 | 3400 | 1.0747 |
1.0271 | 1.7538 | 3500 | 1.0749 |
1.1342 | 1.8039 | 3600 | 1.0738 |
0.8969 | 1.8540 | 3700 | 1.0729 |
1.0329 | 1.9041 | 3800 | 1.0728 |
0.9264 | 1.9542 | 3900 | 1.0727 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Alphatao/c3fa6f9d-7fe0-4e21-baf9-6ba39b462494
Base model
Qwen/Qwen2.5-0.5B
Finetuned
Qwen/Qwen2.5-0.5B-Instruct
Finetuned
unsloth/Qwen2.5-0.5B-Instruct