See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/Qwen2.5-0.5B
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- f2f0b8a70078fb6f_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/f2f0b8a70078fb6f_train_data.json
type:
field_input: Category
field_instruction: Description
field_output: Product Name
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
device_map:
? ''
: 0,1,2,4
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 33
eval_table_size: null
flash_attention: true
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/e3dccf45-cefa-4f2a-a0fb-666c8f060ecb
hub_repo: null
hub_strategy: null
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.3
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 2176.0
micro_batch_size: 4
mlflow_experiment_name: /tmp/f2f0b8a70078fb6f_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 33
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.04
wandb_entity: null
wandb_mode: online
wandb_name: a301c3a8-0dab-457d-9ed0-613fdf7a26f0
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: a301c3a8-0dab-457d-9ed0-613fdf7a26f0
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
e3dccf45-cefa-4f2a-a0fb-666c8f060ecb
This model is a fine-tuned version of unsloth/Qwen2.5-0.5B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8577
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- total_eval_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 494
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
4.5112 | 0.0040 | 1 | 4.5996 |
2.984 | 0.1336 | 33 | 2.9557 |
2.5622 | 0.2672 | 66 | 2.5605 |
2.2693 | 0.4008 | 99 | 2.2670 |
2.0048 | 0.5344 | 132 | 2.0253 |
1.6808 | 0.6680 | 165 | 1.7832 |
1.5331 | 0.8016 | 198 | 1.5485 |
1.5456 | 0.9352 | 231 | 1.3710 |
0.9004 | 1.0688 | 264 | 1.2195 |
0.9746 | 1.2024 | 297 | 1.1203 |
0.9145 | 1.3360 | 330 | 1.0257 |
0.9218 | 1.4696 | 363 | 0.9484 |
0.8369 | 1.6032 | 396 | 0.8949 |
0.7118 | 1.7368 | 429 | 0.8671 |
0.7696 | 1.8704 | 462 | 0.8577 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support