See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/Llama-3.2-3B
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- b10b004d99069455_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/b10b004d99069455_train_data.json
type:
field_instruction: startphrase
field_output: gold-ending
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
device_map:
? ''
: 0,1,2,3,4,5,6,7
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/e7a8531a-f667-43d7-96f2-07ed1b116e7e
hub_repo: null
hub_strategy: null
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
- down_proj
- up_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 2346
micro_batch_size: 4
mlflow_experiment_name: /tmp/b10b004d99069455_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 2048
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 2d26c05a-cd41-4443-90b8-af6e34d0351b
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 2d26c05a-cd41-4443-90b8-af6e34d0351b
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
e7a8531a-f667-43d7-96f2-07ed1b116e7e
This model is a fine-tuned version of unsloth/Llama-3.2-3B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.2395
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 2346
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
4.4298 | 0.0004 | 1 | 4.2132 |
2.6515 | 0.0364 | 100 | 2.4191 |
2.224 | 0.0729 | 200 | 2.3802 |
2.7286 | 0.1093 | 300 | 2.3568 |
2.4288 | 0.1457 | 400 | 2.3433 |
2.2517 | 0.1822 | 500 | 2.3338 |
2.3638 | 0.2186 | 600 | 2.3226 |
2.4078 | 0.2550 | 700 | 2.3116 |
2.4365 | 0.2915 | 800 | 2.3066 |
2.3669 | 0.3279 | 900 | 2.3001 |
2.363 | 0.3643 | 1000 | 2.2917 |
2.2615 | 0.4008 | 1100 | 2.2847 |
2.3083 | 0.4372 | 1200 | 2.2774 |
2.1599 | 0.4736 | 1300 | 2.2743 |
2.1445 | 0.5101 | 1400 | 2.2687 |
2.3314 | 0.5465 | 1500 | 2.2618 |
2.2573 | 0.5829 | 1600 | 2.2566 |
2.4727 | 0.6194 | 1700 | 2.2512 |
2.1696 | 0.6558 | 1800 | 2.2482 |
2.3054 | 0.6922 | 1900 | 2.2447 |
2.312 | 0.7287 | 2000 | 2.2424 |
2.2064 | 0.7651 | 2100 | 2.2407 |
2.4036 | 0.8015 | 2200 | 2.2398 |
2.2385 | 0.8380 | 2300 | 2.2395 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 13
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support