mdeberta-v3-base_binary_2_seed42_NL-IT
This model is a fine-tuned version of microsoft/mdeberta-v3-base on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5350
- Accuracy: 0.7300
- F1: 0.7331
- Precision: 0.7389
- Recall: 0.7300
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 10
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Accuracy |
F1 |
Precision |
Recall |
0.6574 |
0.2105 |
100 |
0.6380 |
0.6667 |
0.5333 |
0.4444 |
0.6667 |
0.6439 |
0.4211 |
200 |
0.6327 |
0.6667 |
0.5333 |
0.4444 |
0.6667 |
0.6343 |
0.6316 |
300 |
0.5922 |
0.6690 |
0.5409 |
0.6958 |
0.6690 |
0.601 |
0.8421 |
400 |
0.6094 |
0.6797 |
0.5854 |
0.6703 |
0.6797 |
0.5767 |
1.0526 |
500 |
0.5627 |
0.7117 |
0.7012 |
0.6992 |
0.7117 |
0.5517 |
1.2632 |
600 |
0.5363 |
0.7200 |
0.7070 |
0.7069 |
0.7200 |
0.5511 |
1.4737 |
700 |
0.5401 |
0.7094 |
0.7161 |
0.7338 |
0.7094 |
0.53 |
1.6842 |
800 |
0.5442 |
0.7141 |
0.7222 |
0.7592 |
0.7141 |
0.5194 |
1.8947 |
900 |
0.5258 |
0.7319 |
0.7366 |
0.7464 |
0.7319 |
0.4867 |
2.1053 |
1000 |
0.5259 |
0.7272 |
0.7317 |
0.7405 |
0.7272 |
0.4717 |
2.3158 |
1100 |
0.5466 |
0.7331 |
0.7279 |
0.7258 |
0.7331 |
0.4657 |
2.5263 |
1200 |
0.5385 |
0.7355 |
0.7381 |
0.7420 |
0.7355 |
0.4683 |
2.7368 |
1300 |
0.5309 |
0.7461 |
0.7470 |
0.7480 |
0.7461 |
Framework versions
- Transformers 4.40.2
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.19.1