mdeberta-v3-base_binary_2_seed7_NL-IT
This model is a fine-tuned version of microsoft/mdeberta-v3-base on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5531
- Accuracy: 0.7234
- F1: 0.7266
- Precision: 0.7324
- Recall: 0.7234
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 10
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Accuracy |
F1 |
Precision |
Recall |
0.7125 |
0.2105 |
100 |
0.6482 |
0.6667 |
0.5333 |
0.4444 |
0.6667 |
0.6448 |
0.4211 |
200 |
0.6268 |
0.6667 |
0.5333 |
0.4444 |
0.6667 |
0.6334 |
0.6316 |
300 |
0.5938 |
0.6667 |
0.5333 |
0.4444 |
0.6667 |
0.6066 |
0.8421 |
400 |
0.5962 |
0.6667 |
0.5333 |
0.4444 |
0.6667 |
0.5887 |
1.0526 |
500 |
0.5849 |
0.7106 |
0.6807 |
0.6942 |
0.7106 |
0.5683 |
1.2632 |
600 |
0.5597 |
0.7034 |
0.6406 |
0.7043 |
0.7034 |
0.578 |
1.4737 |
700 |
0.5500 |
0.7177 |
0.7172 |
0.7167 |
0.7177 |
0.5565 |
1.6842 |
800 |
0.5487 |
0.6916 |
0.6992 |
0.7202 |
0.6916 |
0.5505 |
1.8947 |
900 |
0.5365 |
0.7117 |
0.7062 |
0.7035 |
0.7117 |
0.5137 |
2.1053 |
1000 |
0.5331 |
0.7236 |
0.7269 |
0.7322 |
0.7236 |
0.5162 |
2.3158 |
1100 |
0.5339 |
0.7307 |
0.7304 |
0.7300 |
0.7307 |
0.5022 |
2.5263 |
1200 |
0.5303 |
0.7307 |
0.7336 |
0.7379 |
0.7307 |
0.5103 |
2.7368 |
1300 |
0.5346 |
0.7426 |
0.7353 |
0.7340 |
0.7426 |
0.4983 |
2.9474 |
1400 |
0.5239 |
0.7331 |
0.7350 |
0.7374 |
0.7331 |
0.4902 |
3.1579 |
1500 |
0.5232 |
0.7367 |
0.7397 |
0.7447 |
0.7367 |
0.4496 |
3.3684 |
1600 |
0.5384 |
0.7497 |
0.7460 |
0.7443 |
0.7497 |
0.4522 |
3.5789 |
1700 |
0.5386 |
0.7497 |
0.7496 |
0.7495 |
0.7497 |
0.4597 |
3.7895 |
1800 |
0.5583 |
0.7426 |
0.7373 |
0.7354 |
0.7426 |
Framework versions
- Transformers 4.40.2
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.19.1