BERT-Router-large

This model is a fine-tuned version of google-bert/bert-large-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3906
  • Accuracy: 0.833
  • Auc: 0.949

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 256
  • eval_batch_size: 256
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Auc Accuracy Validation Loss
0.5459 1.0 45 0.893 0.728 0.5640
0.5209 2.0 90 0.904 0.754 0.5379
0.5029 3.0 135 0.911 0.764 0.5176
0.4966 4.0 180 0.916 0.77 0.5019
0.4802 5.0 225 0.92 0.782 0.4860
0.4669 6.0 270 0.925 0.79 0.4712
0.4516 7.0 315 0.928 0.799 0.4597
0.434 8.0 360 0.931 0.803 0.4495
0.429 9.0 405 0.934 0.808 0.4395
0.4187 10.0 450 0.937 0.815 0.4301
0.4008 11.0 495 0.939 0.817 0.4226
0.4088 12.0 540 0.4162 0.82 0.942
0.3915 13.0 585 0.4093 0.824 0.943
0.3877 14.0 630 0.4045 0.827 0.945
0.388 15.0 675 0.4000 0.83 0.946
0.3842 16.0 720 0.3974 0.831 0.947
0.3676 17.0 765 0.3940 0.832 0.948
0.3717 18.0 810 0.3922 0.833 0.948
0.3793 19.0 855 0.3909 0.833 0.949
0.3768 20.0 900 0.3906 0.833 0.949

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.4.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
12
Safetensors
Model size
335M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for AmirMohseni/BERT-Router-large

Finetuned
(130)
this model