BERT-Router-large-v2

This model is a fine-tuned version of google-bert/bert-large-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3815
  • Accuracy: 0.838
  • Auc: 0.951

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 1024
  • eval_batch_size: 1024
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Auc Accuracy Validation Loss
0.3719 1.0 12 0.949 0.835 0.3895
0.3741 2.0 24 0.949 0.835 0.3886
0.3673 3.0 36 0.949 0.836 0.3879
0.3692 4.0 48 0.949 0.836 0.3873
0.3724 5.0 60 0.3866 0.836 0.95
0.3683 6.0 72 0.3859 0.836 0.95
0.3678 7.0 84 0.3853 0.836 0.95
0.3671 8.0 96 0.3847 0.837 0.95
0.3614 9.0 108 0.3842 0.837 0.95
0.3658 10.0 120 0.3838 0.837 0.95
0.3681 11.0 132 0.3834 0.837 0.95
0.3642 12.0 144 0.3831 0.837 0.95
0.3659 13.0 156 0.3827 0.837 0.95
0.3693 14.0 168 0.3823 0.838 0.95
0.3637 15.0 180 0.3820 0.838 0.951
0.3596 16.0 192 0.3819 0.838 0.951
0.3732 17.0 204 0.3817 0.838 0.951
0.3685 18.0 216 0.3816 0.838 0.951
0.3613 19.0 228 0.3815 0.838 0.951
0.3656 20.0 240 0.3815 0.838 0.951

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.4.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
10
Safetensors
Model size
335M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for AmirMohseni/BERT-Router-large-v2

Finetuned
(130)
this model