metadata
			license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - wnut_17
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: my_awesome_wnut_model
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: wnut_17
          type: wnut_17
          config: wnut_17
          split: train
          args: wnut_17
        metrics:
          - name: Precision
            type: precision
            value: 0.5673758865248227
          - name: Recall
            type: recall
            value: 0.2965708989805375
          - name: F1
            type: f1
            value: 0.3895313451004261
          - name: Accuracy
            type: accuracy
            value: 0.9410884528237357
my_awesome_wnut_model
This model is a fine-tuned version of distilbert-base-uncased on the wnut_17 dataset. It achieves the following results on the evaluation set:
- Loss: 0.2747
- Precision: 0.5674
- Recall: 0.2966
- F1: 0.3895
- Accuracy: 0.9411
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | 
|---|---|---|---|---|---|---|---|
| No log | 1.0 | 213 | 0.2827 | 0.5605 | 0.2317 | 0.3279 | 0.9380 | 
| No log | 2.0 | 426 | 0.2747 | 0.5674 | 0.2966 | 0.3895 | 0.9411 | 
Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.7.1
- Tokenizers 0.13.2
Resource:
