spore-sight-fungal-classifier
Fine-tuned Nucleotide Transformer for fungal spore classification.
Developed by: Angad28
Project: Smart India Hackathon 2025 - Spore Sight
Base Model: InstaDeepAI/nucleotide-transformer-v2-100m-multi-species
Quick Start
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
# Load model
tokenizer = AutoTokenizer.from_pretrained("Angad28/spore-sight-fungal-classifier")
model = AutoModelForSequenceClassification.from_pretrained("Angad28/spore-sight-fungal-classifier")
# Classify DNA sequence
sequence = "ATGCGTACGTACGTACGTACGTACGTACGTAC"
inputs = tokenizer(sequence, return_tensors="pt", truncation=True, max_length=512)
with torch.no_grad():
outputs = model(**inputs)
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
predicted_class = torch.argmax(predictions, dim=-1)
confidence = predictions.max()
print(f"Predicted class: {predicted_class.item()}")
print(f"Confidence: {confidence.item():.3f}")
GPU Acceleration (RTX 4060 Compatible)
# GPU setup
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
# Batch processing
sequences = ["ATGCGTAC...", "CGATCGAT...", "TACGATCG..."]
inputs = tokenizer(sequences, return_tensors="pt", truncation=True,
max_length=512, padding=True).to(device)
with torch.no_grad():
outputs = model(**inputs)
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
Classes
{ "2": "Alternaria", "15": "Candida", "92": "Mucor", "175": "Other" }
Node.js Backend Integration
This model works with the Spore Sight Node.js backend:
# Set environment variables in your .env file
HF_MODEL_ID='Angad28/spore-sight-fungal-classifier'
HF_TOKEN='your_hugging_face_token_here'
# Start backend
npm start
Performance
- Hardware: RTX 4060 optimized
- Batch Size: 8 sequences (recommended)
- Max Length: 512 nucleotides
- Inference Speed: ~100 sequences/second
Model Architecture
- Base: Nucleotide Transformer v2 100M Multi-Species
- Fine-tuning: LoRA (Low-Rank Adaptation)
- Task: Multi-class fungal classification
- Classes: 4 fungal genera
Installation & Usage
pip install transformers torch
# For GPU support
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
Citation
@misc{spore-sight-fungal-classifier,
title={Spore Sight: Fine-tuned Nucleotide Transformer for Fungal Classification},
author={Angad28},
year={2025},
publisher={Hugging Face},
url={https://huggingface.co/Angad28/spore-sight-fungal-classifier}
}
License
MIT License
Ready for production with RTX 4060 GPU acceleration! ๐
Uploaded from local files on files