gte-multilingual-base-edu-scorer-lr3e4-bs32-swe
This model is a fine-tuned version of Alibaba-NLP/gte-multilingual-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.9336
- Precision: 0.0478
- Recall: 0.1667
- F1 Macro: 0.0742
- Accuracy: 0.2866
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 Macro | Accuracy |
---|---|---|---|---|---|---|---|
No log | 0 | 0 | 4.1021 | 0.0513 | 0.1666 | 0.0785 | 0.3078 |
1.73 | 0.6793 | 1000 | 2.0901 | 0.0471 | 0.1667 | 0.0735 | 0.2824 |
1.6976 | 1.3587 | 2000 | 1.9935 | 0.0471 | 0.1667 | 0.0735 | 0.2824 |
1.6589 | 2.0380 | 3000 | 2.0057 | 0.1027 | 0.1670 | 0.0742 | 0.2828 |
1.6456 | 2.7174 | 4000 | 2.3130 | 0.0471 | 0.1667 | 0.0735 | 0.2824 |
1.6927 | 3.3967 | 5000 | 2.1982 | 0.0471 | 0.1667 | 0.0734 | 0.2824 |
1.6659 | 4.0761 | 6000 | 2.0477 | 0.0471 | 0.1667 | 0.0734 | 0.2824 |
1.6728 | 4.7554 | 7000 | 2.0806 | 0.0471 | 0.1667 | 0.0734 | 0.2824 |
1.6714 | 5.4348 | 8000 | 2.1802 | 0.0471 | 0.1667 | 0.0734 | 0.2824 |
1.6831 | 6.1141 | 9000 | 2.6460 | 0.0471 | 0.1667 | 0.0734 | 0.2824 |
1.6592 | 6.7935 | 10000 | 2.2354 | 0.0471 | 0.1667 | 0.0734 | 0.2824 |
1.654 | 7.4728 | 11000 | 2.3264 | 0.0471 | 0.1667 | 0.0734 | 0.2824 |
1.6622 | 8.1522 | 12000 | 2.1686 | 0.0471 | 0.1667 | 0.0734 | 0.2824 |
1.6618 | 8.8315 | 13000 | 2.1844 | 0.0471 | 0.1667 | 0.0734 | 0.2824 |
1.6624 | 9.5109 | 14000 | 2.0627 | 0.0471 | 0.1667 | 0.0734 | 0.2824 |
1.7082 | 10.1902 | 15000 | 2.0176 | 0.0471 | 0.1667 | 0.0734 | 0.2824 |
1.7107 | 10.8696 | 16000 | 2.2305 | 0.0471 | 0.1667 | 0.0734 | 0.2824 |
1.6538 | 11.5489 | 17000 | 2.2190 | 0.0471 | 0.1667 | 0.0734 | 0.2824 |
1.6453 | 12.2283 | 18000 | 2.4751 | 0.0179 | 0.1667 | 0.0323 | 0.1073 |
1.6562 | 12.9076 | 19000 | 2.3006 | 0.0179 | 0.1667 | 0.0323 | 0.1073 |
1.6767 | 13.5870 | 20000 | 2.0474 | 0.0471 | 0.1667 | 0.0734 | 0.2824 |
1.672 | 14.2663 | 21000 | 1.9881 | 0.0179 | 0.1667 | 0.0323 | 0.1073 |
1.6355 | 14.9457 | 22000 | 1.9897 | 0.0471 | 0.1667 | 0.0734 | 0.2824 |
1.6608 | 15.625 | 23000 | 2.1116 | 0.0179 | 0.1667 | 0.0323 | 0.1073 |
1.6616 | 16.3043 | 24000 | 2.0205 | 0.0179 | 0.1667 | 0.0323 | 0.1073 |
1.6895 | 16.9837 | 25000 | 2.3756 | 0.0179 | 0.1667 | 0.0323 | 0.1073 |
1.6613 | 17.6630 | 26000 | 2.1950 | 0.0179 | 0.1667 | 0.0323 | 0.1073 |
1.6405 | 18.3424 | 27000 | 2.0526 | 0.0179 | 0.1667 | 0.0323 | 0.1073 |
1.6242 | 19.0217 | 28000 | 2.0278 | 0.0179 | 0.1667 | 0.0323 | 0.1073 |
1.6839 | 19.7011 | 29000 | 2.0130 | 0.0179 | 0.1667 | 0.0323 | 0.1073 |
Framework versions
- Transformers 4.55.0
- Pytorch 2.5.1+cu121
- Datasets 4.0.0
- Tokenizers 0.21.4
- Downloads last month
- 34
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for AngelinaZanardi/gte-multilingual-base-edu-scorer-lr3e4-bs32-swe
Base model
Alibaba-NLP/gte-multilingual-base