nb-bert-edu-scorer-lr3e4-bs32-swe

This model is a fine-tuned version of NbAiLab/nb-bert-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8879
  • Precision: 0.3632
  • Recall: 0.3532
  • F1 Macro: 0.3517
  • Accuracy: 0.4449

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Macro Accuracy
No log 0 0 2.7032 0.1199 0.1705 0.1071 0.2927
1.0821 0.6793 1000 1.2009 0.3826 0.3499 0.3398 0.3735
1.0542 1.3587 2000 1.0028 0.3863 0.3405 0.3351 0.4042
1.0585 2.0380 3000 1.0026 0.4101 0.3453 0.3483 0.4187
0.9973 2.7174 4000 0.9462 0.3941 0.3454 0.3445 0.4310
1.0267 3.3967 5000 0.9757 0.3982 0.3484 0.3438 0.4127
0.9808 4.0761 6000 0.9318 0.4033 0.3529 0.3548 0.4463
0.9875 4.7554 7000 0.9897 0.3967 0.3742 0.3755 0.4484
1.0213 5.4348 8000 0.9562 0.3939 0.3648 0.3653 0.4415
0.9824 6.1141 9000 0.9889 0.4107 0.3843 0.3863 0.4500
0.9985 6.7935 10000 0.9342 0.4013 0.3602 0.3615 0.4447
0.9884 7.4728 11000 0.9365 0.4284 0.3571 0.3540 0.4361
0.985 8.1522 12000 0.9546 0.4030 0.3582 0.3538 0.4302
0.9931 8.8315 13000 0.9669 0.3964 0.3654 0.3622 0.4369
0.9648 9.5109 14000 0.9540 0.3975 0.3701 0.3677 0.4472
1.0004 10.1902 15000 0.9920 0.4165 0.3807 0.3802 0.4379
0.9781 10.8696 16000 0.9374 0.4046 0.3645 0.3601 0.4399
0.9518 11.5489 17000 0.9198 0.4223 0.3710 0.3717 0.4534
0.9559 12.2283 18000 0.9337 0.4145 0.3666 0.3649 0.4494
0.958 12.9076 19000 0.9066 0.4074 0.3676 0.3680 0.4617
0.9748 13.5870 20000 0.9247 0.3963 0.3687 0.3680 0.4629
0.9272 14.2663 21000 0.9438 0.4087 0.3742 0.3739 0.4528
0.9202 14.9457 22000 0.9189 0.4055 0.3706 0.3704 0.4558
0.9919 15.625 23000 0.9003 0.4147 0.3652 0.3647 0.4534
0.9238 16.3043 24000 0.9360 0.4047 0.3722 0.3708 0.4524
0.9356 16.9837 25000 0.9404 0.4238 0.3789 0.3784 0.4494
0.9519 17.6630 26000 0.9054 0.4048 0.3649 0.3648 0.4546
0.9264 18.3424 27000 0.9210 0.3994 0.3705 0.3686 0.4587
0.9153 19.0217 28000 0.9139 0.3974 0.3667 0.3644 0.4518
0.9114 19.7011 29000 0.9319 0.4210 0.3746 0.3747 0.4528

Framework versions

  • Transformers 4.55.0
  • Pytorch 2.6.0.dev20241112+cu121
  • Datasets 4.0.0
  • Tokenizers 0.21.4
Downloads last month
47
Safetensors
Model size
178M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for AngelinaZanardi/nb-bert-edu-scorer-lr3e4-bs32-swe

Finetuned
(26)
this model