nb-bert-edu-scorer-lr3e4-bs32-swe
This model is a fine-tuned version of NbAiLab/nb-bert-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.8879
- Precision: 0.3632
- Recall: 0.3532
- F1 Macro: 0.3517
- Accuracy: 0.4449
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 Macro | Accuracy |
---|---|---|---|---|---|---|---|
No log | 0 | 0 | 2.7032 | 0.1199 | 0.1705 | 0.1071 | 0.2927 |
1.0821 | 0.6793 | 1000 | 1.2009 | 0.3826 | 0.3499 | 0.3398 | 0.3735 |
1.0542 | 1.3587 | 2000 | 1.0028 | 0.3863 | 0.3405 | 0.3351 | 0.4042 |
1.0585 | 2.0380 | 3000 | 1.0026 | 0.4101 | 0.3453 | 0.3483 | 0.4187 |
0.9973 | 2.7174 | 4000 | 0.9462 | 0.3941 | 0.3454 | 0.3445 | 0.4310 |
1.0267 | 3.3967 | 5000 | 0.9757 | 0.3982 | 0.3484 | 0.3438 | 0.4127 |
0.9808 | 4.0761 | 6000 | 0.9318 | 0.4033 | 0.3529 | 0.3548 | 0.4463 |
0.9875 | 4.7554 | 7000 | 0.9897 | 0.3967 | 0.3742 | 0.3755 | 0.4484 |
1.0213 | 5.4348 | 8000 | 0.9562 | 0.3939 | 0.3648 | 0.3653 | 0.4415 |
0.9824 | 6.1141 | 9000 | 0.9889 | 0.4107 | 0.3843 | 0.3863 | 0.4500 |
0.9985 | 6.7935 | 10000 | 0.9342 | 0.4013 | 0.3602 | 0.3615 | 0.4447 |
0.9884 | 7.4728 | 11000 | 0.9365 | 0.4284 | 0.3571 | 0.3540 | 0.4361 |
0.985 | 8.1522 | 12000 | 0.9546 | 0.4030 | 0.3582 | 0.3538 | 0.4302 |
0.9931 | 8.8315 | 13000 | 0.9669 | 0.3964 | 0.3654 | 0.3622 | 0.4369 |
0.9648 | 9.5109 | 14000 | 0.9540 | 0.3975 | 0.3701 | 0.3677 | 0.4472 |
1.0004 | 10.1902 | 15000 | 0.9920 | 0.4165 | 0.3807 | 0.3802 | 0.4379 |
0.9781 | 10.8696 | 16000 | 0.9374 | 0.4046 | 0.3645 | 0.3601 | 0.4399 |
0.9518 | 11.5489 | 17000 | 0.9198 | 0.4223 | 0.3710 | 0.3717 | 0.4534 |
0.9559 | 12.2283 | 18000 | 0.9337 | 0.4145 | 0.3666 | 0.3649 | 0.4494 |
0.958 | 12.9076 | 19000 | 0.9066 | 0.4074 | 0.3676 | 0.3680 | 0.4617 |
0.9748 | 13.5870 | 20000 | 0.9247 | 0.3963 | 0.3687 | 0.3680 | 0.4629 |
0.9272 | 14.2663 | 21000 | 0.9438 | 0.4087 | 0.3742 | 0.3739 | 0.4528 |
0.9202 | 14.9457 | 22000 | 0.9189 | 0.4055 | 0.3706 | 0.3704 | 0.4558 |
0.9919 | 15.625 | 23000 | 0.9003 | 0.4147 | 0.3652 | 0.3647 | 0.4534 |
0.9238 | 16.3043 | 24000 | 0.9360 | 0.4047 | 0.3722 | 0.3708 | 0.4524 |
0.9356 | 16.9837 | 25000 | 0.9404 | 0.4238 | 0.3789 | 0.3784 | 0.4494 |
0.9519 | 17.6630 | 26000 | 0.9054 | 0.4048 | 0.3649 | 0.3648 | 0.4546 |
0.9264 | 18.3424 | 27000 | 0.9210 | 0.3994 | 0.3705 | 0.3686 | 0.4587 |
0.9153 | 19.0217 | 28000 | 0.9139 | 0.3974 | 0.3667 | 0.3644 | 0.4518 |
0.9114 | 19.7011 | 29000 | 0.9319 | 0.4210 | 0.3746 | 0.3747 | 0.4528 |
Framework versions
- Transformers 4.55.0
- Pytorch 2.6.0.dev20241112+cu121
- Datasets 4.0.0
- Tokenizers 0.21.4
- Downloads last month
- 47
Model tree for AngelinaZanardi/nb-bert-edu-scorer-lr3e4-bs32-swe
Base model
NbAiLab/nb-bert-base