nb-sbert-base-edu-scorer-lr3e4-bs32-swe

This model is a fine-tuned version of NbAiLab/nb-sbert-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7479
  • Mse: 0.7479
  • Mae: 0.6630
  • Rmse: 0.8648
  • R2: 0.6113

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Mse Mae Rmse R2
No log 0 0 6.8805 6.8805 2.1967 2.6231 -2.4611
0.9599 0.3397 1000 0.9498 0.9498 0.7640 0.9746 0.5222
0.9341 0.6793 2000 0.9336 0.9336 0.7346 0.9662 0.5303
0.9028 1.0190 3000 0.8837 0.8837 0.7160 0.9400 0.5555
0.9487 1.3587 4000 0.9146 0.9146 0.7252 0.9563 0.5399
0.9194 1.6984 5000 0.8668 0.8668 0.7192 0.9310 0.5640
0.8753 2.0380 6000 0.8623 0.8623 0.7353 0.9286 0.5662
0.8543 2.3777 7000 0.8650 0.8650 0.7066 0.9300 0.5649
0.8819 2.7174 8000 0.8821 0.8821 0.7162 0.9392 0.5563
0.8642 3.0571 9000 0.8859 0.8859 0.7103 0.9412 0.5544
0.8439 3.3967 10000 0.8715 0.8715 0.7073 0.9335 0.5616
0.8415 3.7364 11000 0.8568 0.8568 0.7036 0.9256 0.5690
0.8587 4.0761 12000 0.8363 0.8363 0.7023 0.9145 0.5793
0.8756 4.4158 13000 0.9141 0.9141 0.7212 0.9561 0.5402
0.821 4.7554 14000 0.8662 0.8662 0.7027 0.9307 0.5643
0.7879 5.0951 15000 0.8590 0.8590 0.7267 0.9268 0.5679
0.8004 5.4348 16000 0.8575 0.8575 0.7049 0.9260 0.5687
0.8436 5.7745 17000 0.8379 0.8379 0.7079 0.9154 0.5785
0.8116 6.1141 18000 0.8296 0.8296 0.7003 0.9108 0.5827
0.8027 6.4538 19000 0.8433 0.8433 0.6905 0.9183 0.5758
0.8269 6.7935 20000 0.8274 0.8274 0.6951 0.9096 0.5838
0.8064 7.1332 21000 0.8359 0.8359 0.7032 0.9143 0.5795
0.8019 7.4728 22000 0.8230 0.8230 0.6902 0.9072 0.5860
0.8072 7.8125 23000 0.8227 0.8227 0.7104 0.9071 0.5861
0.8097 8.1522 24000 0.8859 0.8859 0.7086 0.9412 0.5544
0.785 8.4918 25000 0.8272 0.8272 0.6989 0.9095 0.5839
0.796 8.8315 26000 0.8166 0.8166 0.6867 0.9037 0.5892
0.8285 9.1712 27000 0.8280 0.8280 0.6945 0.9100 0.5835
0.7995 9.5109 28000 0.8351 0.8351 0.6897 0.9138 0.5799
0.8177 9.8505 29000 0.8191 0.8191 0.6976 0.9051 0.5880
0.7801 10.1902 30000 0.8114 0.8114 0.6940 0.9008 0.5918
0.7986 10.5299 31000 0.8139 0.8139 0.6885 0.9022 0.5906
0.7764 10.8696 32000 0.8062 0.8062 0.6950 0.8979 0.5944
0.7747 11.2092 33000 0.8276 0.8276 0.6859 0.9097 0.5837
0.7761 11.5489 34000 0.8260 0.8260 0.6943 0.9088 0.5845
0.7436 11.8886 35000 0.8186 0.8186 0.6873 0.9048 0.5882
0.7461 12.2283 36000 0.8164 0.8164 0.6881 0.9035 0.5893
0.8033 12.5679 37000 0.8160 0.8160 0.6867 0.9033 0.5895
0.7739 12.9076 38000 0.8077 0.8077 0.6875 0.8987 0.5937
0.7596 13.2473 39000 0.8180 0.8180 0.6882 0.9045 0.5885
0.7938 13.5870 40000 0.8066 0.8066 0.6921 0.8981 0.5942
0.7822 13.9266 41000 0.8264 0.8264 0.6891 0.9091 0.5843
0.7615 14.2663 42000 0.8117 0.8117 0.6859 0.9009 0.5917
0.7912 14.6060 43000 0.8358 0.8358 0.6894 0.9142 0.5796
0.7675 14.9457 44000 0.8020 0.8020 0.6843 0.8955 0.5966
0.7117 15.2853 45000 0.8182 0.8182 0.6892 0.9045 0.5884
0.7439 15.625 46000 0.8023 0.8023 0.6912 0.8957 0.5964
0.7614 15.9647 47000 0.8020 0.8020 0.6898 0.8955 0.5966
0.7591 16.3043 48000 0.8145 0.8145 0.6896 0.9025 0.5903
0.7949 16.6440 49000 0.8129 0.8129 0.6845 0.9016 0.5911
0.747 16.9837 50000 0.8093 0.8093 0.6840 0.8996 0.5929
0.752 17.3234 51000 0.8071 0.8071 0.6898 0.8984 0.5940
0.7236 17.6630 52000 0.8027 0.8027 0.6830 0.8959 0.5962
0.7392 18.0027 53000 0.8081 0.8081 0.6831 0.8990 0.5935
0.7154 18.3424 54000 0.8057 0.8057 0.6867 0.8976 0.5947
0.766 18.6821 55000 0.8104 0.8104 0.6837 0.9002 0.5923
0.7268 19.0217 56000 0.8061 0.8061 0.6849 0.8978 0.5945
0.7886 19.3614 57000 0.8074 0.8074 0.6859 0.8986 0.5939
0.7258 19.7011 58000 0.8051 0.8051 0.6856 0.8973 0.5950

Framework versions

  • Transformers 4.55.0
  • Pytorch 2.5.1+cu121
  • Datasets 4.0.0
  • Tokenizers 0.21.4
Downloads last month
56
Safetensors
Model size
178M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for AngelinaZanardi/nb-sbert-base-edu-scorer-lr3e4-bs32-swe

Finetuned
(15)
this model