nb-sbert-base-edu-scorer-lr3e4-bs32-swe
This model is a fine-tuned version of NbAiLab/nb-sbert-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.7479
- Mse: 0.7479
- Mae: 0.6630
- Rmse: 0.8648
- R2: 0.6113
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Mse | Mae | Rmse | R2 |
---|---|---|---|---|---|---|---|
No log | 0 | 0 | 6.8805 | 6.8805 | 2.1967 | 2.6231 | -2.4611 |
0.9599 | 0.3397 | 1000 | 0.9498 | 0.9498 | 0.7640 | 0.9746 | 0.5222 |
0.9341 | 0.6793 | 2000 | 0.9336 | 0.9336 | 0.7346 | 0.9662 | 0.5303 |
0.9028 | 1.0190 | 3000 | 0.8837 | 0.8837 | 0.7160 | 0.9400 | 0.5555 |
0.9487 | 1.3587 | 4000 | 0.9146 | 0.9146 | 0.7252 | 0.9563 | 0.5399 |
0.9194 | 1.6984 | 5000 | 0.8668 | 0.8668 | 0.7192 | 0.9310 | 0.5640 |
0.8753 | 2.0380 | 6000 | 0.8623 | 0.8623 | 0.7353 | 0.9286 | 0.5662 |
0.8543 | 2.3777 | 7000 | 0.8650 | 0.8650 | 0.7066 | 0.9300 | 0.5649 |
0.8819 | 2.7174 | 8000 | 0.8821 | 0.8821 | 0.7162 | 0.9392 | 0.5563 |
0.8642 | 3.0571 | 9000 | 0.8859 | 0.8859 | 0.7103 | 0.9412 | 0.5544 |
0.8439 | 3.3967 | 10000 | 0.8715 | 0.8715 | 0.7073 | 0.9335 | 0.5616 |
0.8415 | 3.7364 | 11000 | 0.8568 | 0.8568 | 0.7036 | 0.9256 | 0.5690 |
0.8587 | 4.0761 | 12000 | 0.8363 | 0.8363 | 0.7023 | 0.9145 | 0.5793 |
0.8756 | 4.4158 | 13000 | 0.9141 | 0.9141 | 0.7212 | 0.9561 | 0.5402 |
0.821 | 4.7554 | 14000 | 0.8662 | 0.8662 | 0.7027 | 0.9307 | 0.5643 |
0.7879 | 5.0951 | 15000 | 0.8590 | 0.8590 | 0.7267 | 0.9268 | 0.5679 |
0.8004 | 5.4348 | 16000 | 0.8575 | 0.8575 | 0.7049 | 0.9260 | 0.5687 |
0.8436 | 5.7745 | 17000 | 0.8379 | 0.8379 | 0.7079 | 0.9154 | 0.5785 |
0.8116 | 6.1141 | 18000 | 0.8296 | 0.8296 | 0.7003 | 0.9108 | 0.5827 |
0.8027 | 6.4538 | 19000 | 0.8433 | 0.8433 | 0.6905 | 0.9183 | 0.5758 |
0.8269 | 6.7935 | 20000 | 0.8274 | 0.8274 | 0.6951 | 0.9096 | 0.5838 |
0.8064 | 7.1332 | 21000 | 0.8359 | 0.8359 | 0.7032 | 0.9143 | 0.5795 |
0.8019 | 7.4728 | 22000 | 0.8230 | 0.8230 | 0.6902 | 0.9072 | 0.5860 |
0.8072 | 7.8125 | 23000 | 0.8227 | 0.8227 | 0.7104 | 0.9071 | 0.5861 |
0.8097 | 8.1522 | 24000 | 0.8859 | 0.8859 | 0.7086 | 0.9412 | 0.5544 |
0.785 | 8.4918 | 25000 | 0.8272 | 0.8272 | 0.6989 | 0.9095 | 0.5839 |
0.796 | 8.8315 | 26000 | 0.8166 | 0.8166 | 0.6867 | 0.9037 | 0.5892 |
0.8285 | 9.1712 | 27000 | 0.8280 | 0.8280 | 0.6945 | 0.9100 | 0.5835 |
0.7995 | 9.5109 | 28000 | 0.8351 | 0.8351 | 0.6897 | 0.9138 | 0.5799 |
0.8177 | 9.8505 | 29000 | 0.8191 | 0.8191 | 0.6976 | 0.9051 | 0.5880 |
0.7801 | 10.1902 | 30000 | 0.8114 | 0.8114 | 0.6940 | 0.9008 | 0.5918 |
0.7986 | 10.5299 | 31000 | 0.8139 | 0.8139 | 0.6885 | 0.9022 | 0.5906 |
0.7764 | 10.8696 | 32000 | 0.8062 | 0.8062 | 0.6950 | 0.8979 | 0.5944 |
0.7747 | 11.2092 | 33000 | 0.8276 | 0.8276 | 0.6859 | 0.9097 | 0.5837 |
0.7761 | 11.5489 | 34000 | 0.8260 | 0.8260 | 0.6943 | 0.9088 | 0.5845 |
0.7436 | 11.8886 | 35000 | 0.8186 | 0.8186 | 0.6873 | 0.9048 | 0.5882 |
0.7461 | 12.2283 | 36000 | 0.8164 | 0.8164 | 0.6881 | 0.9035 | 0.5893 |
0.8033 | 12.5679 | 37000 | 0.8160 | 0.8160 | 0.6867 | 0.9033 | 0.5895 |
0.7739 | 12.9076 | 38000 | 0.8077 | 0.8077 | 0.6875 | 0.8987 | 0.5937 |
0.7596 | 13.2473 | 39000 | 0.8180 | 0.8180 | 0.6882 | 0.9045 | 0.5885 |
0.7938 | 13.5870 | 40000 | 0.8066 | 0.8066 | 0.6921 | 0.8981 | 0.5942 |
0.7822 | 13.9266 | 41000 | 0.8264 | 0.8264 | 0.6891 | 0.9091 | 0.5843 |
0.7615 | 14.2663 | 42000 | 0.8117 | 0.8117 | 0.6859 | 0.9009 | 0.5917 |
0.7912 | 14.6060 | 43000 | 0.8358 | 0.8358 | 0.6894 | 0.9142 | 0.5796 |
0.7675 | 14.9457 | 44000 | 0.8020 | 0.8020 | 0.6843 | 0.8955 | 0.5966 |
0.7117 | 15.2853 | 45000 | 0.8182 | 0.8182 | 0.6892 | 0.9045 | 0.5884 |
0.7439 | 15.625 | 46000 | 0.8023 | 0.8023 | 0.6912 | 0.8957 | 0.5964 |
0.7614 | 15.9647 | 47000 | 0.8020 | 0.8020 | 0.6898 | 0.8955 | 0.5966 |
0.7591 | 16.3043 | 48000 | 0.8145 | 0.8145 | 0.6896 | 0.9025 | 0.5903 |
0.7949 | 16.6440 | 49000 | 0.8129 | 0.8129 | 0.6845 | 0.9016 | 0.5911 |
0.747 | 16.9837 | 50000 | 0.8093 | 0.8093 | 0.6840 | 0.8996 | 0.5929 |
0.752 | 17.3234 | 51000 | 0.8071 | 0.8071 | 0.6898 | 0.8984 | 0.5940 |
0.7236 | 17.6630 | 52000 | 0.8027 | 0.8027 | 0.6830 | 0.8959 | 0.5962 |
0.7392 | 18.0027 | 53000 | 0.8081 | 0.8081 | 0.6831 | 0.8990 | 0.5935 |
0.7154 | 18.3424 | 54000 | 0.8057 | 0.8057 | 0.6867 | 0.8976 | 0.5947 |
0.766 | 18.6821 | 55000 | 0.8104 | 0.8104 | 0.6837 | 0.9002 | 0.5923 |
0.7268 | 19.0217 | 56000 | 0.8061 | 0.8061 | 0.6849 | 0.8978 | 0.5945 |
0.7886 | 19.3614 | 57000 | 0.8074 | 0.8074 | 0.6859 | 0.8986 | 0.5939 |
0.7258 | 19.7011 | 58000 | 0.8051 | 0.8051 | 0.6856 | 0.8973 | 0.5950 |
Framework versions
- Transformers 4.55.0
- Pytorch 2.5.1+cu121
- Datasets 4.0.0
- Tokenizers 0.21.4
- Downloads last month
- 56
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for AngelinaZanardi/nb-sbert-base-edu-scorer-lr3e4-bs32-swe
Base model
NbAiLab/nb-sbert-base