nb-sbert-base-edu-scorer-lr3e5-bs32_swe_test
This model is a fine-tuned version of NbAiLab/nb-sbert-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.1619
- Accuracy: 0.5221
- F1 Weighted: 0.4937
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Weighted |
---|---|---|---|---|---|
1.1966 | 1.0 | 1472 | 1.1938 | 0.4988 | 0.4553 |
1.1189 | 2.0 | 2944 | 1.2050 | 0.4960 | 0.4689 |
0.9824 | 3.0 | 4416 | 1.2919 | 0.4810 | 0.4594 |
0.8382 | 4.0 | 5888 | 1.4092 | 0.4726 | 0.4676 |
0.6931 | 5.0 | 7360 | 1.6323 | 0.4647 | 0.4557 |
0.5517 | 6.0 | 8832 | 1.8313 | 0.4534 | 0.4562 |
0.4569 | 7.0 | 10304 | 1.9833 | 0.4546 | 0.4559 |
0.3766 | 8.0 | 11776 | 2.2487 | 0.4397 | 0.4492 |
0.3169 | 9.0 | 13248 | 2.4014 | 0.4431 | 0.4492 |
0.2588 | 10.0 | 14720 | 2.5840 | 0.4320 | 0.4409 |
0.2246 | 11.0 | 16192 | 2.7939 | 0.4474 | 0.4544 |
0.1961 | 12.0 | 17664 | 2.9201 | 0.4540 | 0.4585 |
0.1389 | 13.0 | 19136 | 3.0996 | 0.4522 | 0.4590 |
0.1268 | 14.0 | 20608 | 3.2763 | 0.4415 | 0.4516 |
0.1016 | 15.0 | 22080 | 3.5122 | 0.4532 | 0.4629 |
0.0825 | 16.0 | 23552 | 3.6232 | 0.4603 | 0.4624 |
0.0702 | 17.0 | 25024 | 3.8524 | 0.4564 | 0.4636 |
0.0454 | 18.0 | 26496 | 4.0069 | 0.4506 | 0.4589 |
0.0414 | 19.0 | 27968 | 4.1465 | 0.4498 | 0.4576 |
0.0313 | 20.0 | 29440 | 4.1988 | 0.4556 | 0.4620 |
Framework versions
- Transformers 4.55.0
- Pytorch 2.5.1+cu121
- Datasets 4.0.0
- Tokenizers 0.21.4
- Downloads last month
- 29
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for AngelinaZanardi/nb-sbert-base-edu-scorer-lr3e5-bs32_swe_test
Base model
NbAiLab/nb-sbert-base